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Discrete Event Systems

• Dynamic systems whose state changes only at distinct moments in time, triggered by the 
occurrence of discrete events.

• Key application areas include : RAS , Workflows, Manufacturing, logistics, 
transportation, telecommunications, computer networks,  robotics, healthcare, and more.

• These domains often involve concurrency, conflict, and causal relationships among 
events, which can frequently lead to situations where further progress is blocked.

• For this reason, families of Petri nets are widely recognized as highly effective and 
efficient tools for modeling and simulating the dynamic behaviors present in these 
kinds of systems.
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DES Behaviour

• The behavior of a system is determined by both external and internal events..

• Controllable events are those that a controller can enable or disable, and they are 
typically observable.

• Uncontrollable events occur spontaneously, cannot be prevented by the controller, 
and may or may not be observable.
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Key behavioral properties of Petri nets

• Boundedness : ensures that number of system states or resources remains within a finite 
limit, preventing uncontrolled growth or overflow.

• It is decidable, with EXPSPACE-complete complexity

• Liveness : guarantees that, from any reachable state, each transition can eventually 
occur.

• Also decidable, with EXPSPACE-complete complexity.
• certain subclasses of nets allow polynomial-time verification.

• Deadlock-freeness means that, in every reachable state, at least one transition remains 
enabled.

Liveness implies deadlock-freeness, but not vice versa.
Deadlock :  occurrence of states in which the system is totally blocked.

Livelock:  system keeps changing state but makes no progress.
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Around deadlock state 

• A deadlock marking/state is a marking/state with no enabled transitions.

• A bad marking is a marking that leads eventually to deadlock markings.
• A deadlock is then a bad marking.

• A dangerous marking is a marking such that among its successors, there is, at least, a
bad marking and, at least, a not bad marking.

• A legal marking is neither a bad nor a dangerous marking.
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Deadlock control problem
The deadlock control problem seeks to prevent deadlocks and ensure liveness, 
especially in Petri net models
• Literature classifies deadlock control methods into three strategies.

• Dedlock detection and recovery
• Detect and resolve deadlock when it occurs 

• Deadlock avoidance 
• An online control policy selects feasible system actions to avoid deadlocks.

• Deadlock prevention 
• An offline policy sets constraints to prevent system deadlocks. 

Using both structural and state-space analysis
(reachability graph , siphons, resource circuits, configurations, linear programming,..)
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Deadlock prevention methods
• State space analysis-based methods 

• maximally permissive controllers
• prevent deadlocks without over-restricting system behavior thus maximizing 

resource utilization
• cannot avoid the problem of state explosion. 

• Structural methods (siphons in PN, circuits in graphic representation) 
• efficient deadlock controllers but limited to specific Petri net subclasses

• does not need to analyze the state-space of the system
• Exponential growth in structural objects; highly time-consuming

• New method : Time-Based Deadlock Prevention (TBDP)
• Given a Petri Net 𝑁𝑢 , the TBDP problem asks whether deadlocks can be prevented by 

assigning firing intervals that guarantee deadlock-freeness in a Time Petri Net 𝑁. 
• This may restrict transition sequences and make some markings unreachable.
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Time Petri Net  and its semantics  (Boucheneb & al 2013)

• Formally, a TPN is a tuple (P,T,Pre,Post,M0, Is) where :

• (P,T,Pre,Post,M0) is a Petri net
• Is is a static firing interval function (Is : T → INT)

• The static firing interval [ai , bi ] of ti specifies its minimal and maximal firing delays (relatively to 
its enabling date).

• When ti is newly enabled, I (ti ) = [ai , bi ]
• Bounds of I(ti ) decrease synchronously with time until ti is fired or disabled by a conflicting 

firing.

• ti is firable, if ↓ I (ti ) = 0. 
• It must fire immediately, when ↑ I (ti ) = 0, unless it is disabled.

• Its firing takes no time but leads to a new marking.

• Petri nets  can be viewed as Time Petri nets in which each transition carries static interval [0,∞[.
• So deadlock- control under timing constraints is realistic
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Continued…

• For a TPN 𝑁, a state 𝑠 is the pair (M, I) ,where 𝑀 is a marking and 𝐼 assigns firing intervals to all 
enabled transitions at 𝑀. 

• Let (M, I) ,(M’, I’) two states, dh ∈ R+ a nonnegative real number, t ∈ T a transition and → the 
transition relation over states that consists of continuous ( time progression)  and discrete 
transitions ( firing progression)

                                                                                

• Continuous transition  :  iff s′ is reachable from s in dh time units i.e.,

• Discrete transition :                            iff t is immediately firable from s and its firing leads to s’, i.e.,

                                    𝑡 ∈𝐸𝑛(𝑀),↓𝐼(𝑡)=0,∀𝑝 ∈ 𝑃, 𝑀′(𝑝)=𝑀(𝑝)−𝑃𝑟𝑒(𝑝,𝑡)+𝑃𝑜𝑠𝑡(𝑝,𝑡)  and 
                                    ∀𝑡′∈𝐸𝑛(𝑀′),𝐼′(𝑡′) = 𝐼𝑠(𝑡′) if 𝑡′ ∈ 𝑁𝑤(𝑀,𝑡) ,𝐼(𝑡′) otherwise.

Property : If the lower bounds of the firing intervals are all 0 or the upper bounds of the firing 
intervals are all  then TPN preserve the firing sequences and the markings of underlying PN.

∀𝑡 ∈𝐸𝑛(𝑀),𝑑ℎ≤ ↑𝐼(𝑡), 𝑀′=𝑀 and ∀𝑡′∈𝐸𝑛(𝑀′),𝐼′(𝑡′)=[𝑀𝑎𝑥(0,↓𝐼(𝑡′)−𝑑ℎ),↑𝐼(𝑡′)−𝑑ℎ].
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Analysis of TPN Behavior
• Time Petri nets generate infinitely many possible successor states, since transitions can 

fire at any moment within their specified firing intervals. 
• As a result, it is not possible to fully capture their behavior using a standard state reachability graph.
• In general, the problems of reachability, boundedness, and liveness are undecidable for Time Petri 

nets

• To address this challenge, verification relies on state space abstraction techniques.
• States that are reachable by the same firing sequence are grouped together into sets, according to an 

equivalence relation—these are known as state classes or state zones. 
• These abstract sets make it possible to analyze Time Petri nets by providing finite representations of 

their infinite state spaces, as long as the nets are bounded.

• The State Class Graph (SCG) : This method groups states that are reachable by the same firing 
sequence into state classes—equivalence classes defined by a common marking and a set of timing 
constraints known as the firing domain (Berthomieu & al. 91).

• SCG is finite if and only if the TPN is bounded, a sufficient condition is that the underlying Petri net is bounded
• Its complexity is PSACE-complete (Boucheneb & al 2009). 
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Main Steps of the SCG Method  (Berthomieu & al. 91 , CSCG  Boucheneb & al 08)

• Initialization:
• Start from the initial marking 𝑀0 and firing domain 𝐷0 ,which expresses the bounds for all initially 

enabled transitions:  a 𝑡 ≤ 𝑥𝑡 ≤ 𝑏 𝑡 .

• State Class Construction:
• For each current class 𝑀 𝐷  ,consider each enabled transition.
• Apply the firing rules: when a transition 𝑡 fires, update the marking and the constraints for enabled 

transitions. For transitions remaining enabled, preserve their clock values; clocks for newly enabled 
transitions are reset to zero.

• Successor Classes:
• Compute successors for all firable transitions, generating new classes 𝑀′ 𝐷′ corresponding to post-

firing markings and updated firing domains.

• Equivalence and Abstraction:
• Group together states that share the same marking and satisfy equivalent firing domains. Only distinct 

classes are kept in the graph, making it finite if the net is bounded.
• Iteration:

• Repeat the process for all reachable classes, expanding the graph until no new classes are generated.
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State Class Graph : an example from G. Berthomieu , MSR 2001
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TBDP : A Parametric model- checking problem
Parametric model-checking involves determining whether there are parameter values for 
which a parametric model satisfies a given property, and, if so, identifying all such 
parameter values.

• The TBDP is formulated as a parametric safety model-checking problem in which :
• the input model parametric TPN is a Petri net extended with 𝟐 ×∣ 𝑻 ∣distinct, non-

negative integer parameters, where each parameter represents either the lower or
the upper bound of a transition's firing interval.

• the safety property to be verified is deadlock-freeness.

• Due to the inclusion relationship between TPN extensions,
• the TBDP problem can be reduced to deadlock prevention by associating to each 

transition a single (parametric) firing interval ( i.e. a = b ).
• As result, the number of parameters reduced by half.
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TBDP problem : decidability and complexity
• The reachability problem for parametric TPN is shown to be not decidable, even for

bounded parametric TPN. (Traonouez, L & al,  2018)

• However, for the subclass known as L/U bounded parametric TPNs, where the 
parameters defining the lower bounds of firing intervals are entirely distinct from those 
of the upper bounds, the reachability is decidable. (Traonouez, L & al, 2018)

• This also holds for the bounded parametric TPNs used in the TBDP problem.

• Moreover , any L/U bounded parametric TPN can be converted into an equivalent 
timed L/U parametric timed automaton, for which reachability analysis is PSPACE-
complete (Hune, T. & al, 2008).

Theorem : The TBDP problem is decidable and PSPACE-complete for bounded PN
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Example 2
Consider model PN1 and its marking graph at Fig.1. To deal with TBDP problem for PN1:
• we associate with each transition ti of PN1, a parametric interval [ai; bi]
• the safety property AG not deadlock (i.e all reachable markings are not deadlock).

We then use the parametric model checker Roméo to compute the parametric state
class graph (PSCG) in a similar way as the non-parametric case ( Lime D & all 2009)
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PSCG of the parametric TPN of PN1 20 Parametric state classes of the PSCG
16
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The solution 
• The parametric model checker Romeo verifies that the deadlock-free property holds for 

the following parameter domain 𝑫:
D = {(a1, a2, a3, b1, b2, b3) ∈ N6  |  a1 ≤ b1 < 2a2  a2 ≤ b2 < 2a1  a3 ≤ b3}.

Each value in 𝑫 defines a TPN extension of PN1 that remains free of deadlocks.
  The constrain b1<2a2 and b2<2a1 ensure that two consecutive firings of transitions 𝑡1 and 𝑡2 cannot occur

• Different solutions correspond to controllers with varying levels of permissiveness.

• The solution a1 = b1 = 3, a2 = b2 = 4 and a3 = b3 = 1 yields a TPN, where the markings 
M2, M3 and M5 are not reachable.

• The solution a1 = b1 = a2 = b2 = 4 and a3 = b3 = 1 preserves all, and only all, paths of 
PN1 that are free from bad markings. It is then maximally permissive
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Parametric model checking approach  issues  

How can PSCG's state explosion problem be significantly mitigated?
• This proliferation of states mainly occurs because different interleavings of the same transitions 

typically produce distinct (parametric) state classes or firing domains
• Propose mitigation strategies to eliminate unnecessary distinctions between firing orders that 

result in identical behavioral outcomes.
• the number of explored state classes can be significantly decreased.

• How to identify permissive conditions?
• We seek solutions that are maximally permissive, imposing the fewest possible restrictions on the 

model's behavior.
• What conditions ensure that only undesirable transitions are prevented from firing, so that all 

acceptable behaviors remain allowed?
• use inequalities and parameters to describe all possible states reachable within specific 

timing constraints.

To address these challenges of the TBDP problem, we propose a symbolic approach.
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Symbolic approach to deal with the TBDP problem
This approach consists of a depth-first search (DFS) of a symbolic reachability graph
(SRG) of the input PN.

• Two main advantages of exploring SRG of a given PN instead of SCG (parametric) of its
extended TPN (parametric)

• Effective mitigation of PSCG state explosion:
• Unlike the State Class Graph (SCG), the Symbolic Reachability Graph (SRG)

groups all interleavings of the same transitions into a single marking.
• This greatly reduces redundant state exploration.

• Elimination of time constraints tied to firing order
• Unlike the SCG, the SRG eliminates unnecessary distinctions related to firing

order.
• This avoids costly manipulation of parametric time domains and makes 

the analysis of larger or more complex systems significantly more 
scalable.
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Construction of the symbolic reachability graph (SRG)
The firing delay interval of each transition ti is represented symbolically by [ai , bi], where ai
and bi are two non-negative integer parameters such that ai ≤ bi . 

The SRG is computed based on a DFS exploration (i.e., exploration path-by-path).
During the exploration of the SRG, the kind of each marking M is determined and recorded : 
bad, dangerous or legal

• We denote by parent of an enabled transition t , the fired transition that has enabled t.

Some upper bounds of the distances between the firing dates of transitions enabled at M are 
computed and saved as linear combinations over the set of parameters Pr and denoted by  : 
A symbolic marking is defined as a couple  = (M, ∆)
The initial symbolic marking is 0 = (M0, ∆0), where M0 is the initial marking and 

for all t, t′ ∈ En(M0), ∆0(t, t′ ) = b − a′ 
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Construction of the symbolic reachability graph (SRG)
• Starting from the initial symbolic marking 0  = (M0, ∆0), , the successor symbolic 

markings are computed using the following firing rule: 
• Let  = (M, ∆) be a symbolic marking and tf a transition  firable from 

• its successor symbolic marking is  ’ = ( M’, ∆’ ) such that : 

• Note that tf is the parent of all transitions within Nw(M, tf ) and ∆′ (t, t′ ) is an upper bound 
of the distance between the firing dates of t and t ′ :

• Therefore ∆(t, t′ ) < 0 ⇒ (t ′ cannot occur before t from ).
• ∆(t, t′ ) < 0 a sufficient condition that ensures that t ′ cannot occur before t from  in 

the parametric TPN 
• By contraposition (t ′ can occur before t from α) ⇒ ∆(t, t′ ) ≥ 0
• ∆(t, t′ ) ≥ 0 is a necessary condition of t ′ can occur before t from α 
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Construction of the symbolic reachability graph (SRG)

SRG of PN1

It consists of six symbolic markings
The markings M3 and M5 are bad. 

The markings M1 and M2 are dangerous. 
M0 and M4 are legal.

( its PSCG  contains 20 state classes) 

PN1
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SRG analysis :  Deadlock preventing conditions
• A transition t enabled at a dangerous marking M is said to be bad iff the successor 

marking of M by t is a bad marking.
• The marking M has a non-empty set of bad output transitions, denoted by O(M), 

otherwise, it is legal

• Let a dangerous marking M of a symbolic marking  = (M, ∆)

• The bad output transitions of M  cannot occur in case for each bad transition to of 
O(M), there is, at least, a non bad transition ts in En(M) − O(M) that must be fired 
strictly before to from .

• We denote by DPC() the deadlock preventing condition of  = (M, ∆) defined by:

Intuitively, if M is dangerous, DPC() ensures that for each bad output transition to of O(M, there exists at least a non bad output 
transition ts of M such that its maximum firing date is strictly smaller than the minimum firing date of to.
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SRG analysis :  Deadlock preventing conditions

• Given a PN, the preventing condition of a reachable dangerous marking M is the 
conjunction of the DPCs of all reachable symbolic markings that share the same 
marking M. 

• If the conjunction of all the DPCs of the dangerous markings is consistent, then the 
TBDP has, at least, a solution and this conjunction characterizes a set of solutions for 
the TBDP problem. 

• Note that the deadlock preventing condition of a dangerous marking is sufficient but not 
necessary to prevent reaching the deadlock markings. 

24Colloque MSR25 - Reims 19 novembre 2025 



SRG analysis of PN1 example 

• There are, in the dangerous marking M1 of 1, two enabled transitions t1 and t2 but 
only t1 is bad.

• The deadlock preventing condition of 1 is then ∆1(t2 , t1) < 0, which is equivalent to b2 < 2a1. 
It guaranties that, in 1, the firing date of t1 is strictly larger than the firing date of t2. 

• Similarly, in the dangerous marking M2 of 2, among the two enabled transitions 
t1 and t2, only t2 is bad. 

• The deadlock preventing condition of  2 is then ∆2(t1, t2) < 0 , which is equivalent to b1 < 2a2. 

• The conjunction of the deadlock preventing conditions of 1 and 2 (i.e., b1 < 
2a2 ∧ b2 < 2a1) with the basic constraints (i.e., 0 ≤ a1 ≤ b1 ∧ 0 ≤ a2 ≤ b2 ∧ 0 ≤ a3 ≤ b3) 
characterizes a set of deadlock-free TPN extensions of PN1.
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SRG analysis :  Permissive conditions

• The SRG can provide different solutions for the TBDP problem that impose
different restrictions on the behaviour of its input PN model.

• Among these solutions, we are interested in those yielding less restriction in the
behaviour of the input model (i.e., more permissive solutions).

• In this sense, we introduce the permissive conditions which are necessary
conditions for the firability of all the enabled transitions of the legal symbolic
markings
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SRG analysis :  Permissive conditions
• Let  = (M, ∆) be a symbolic marking and ti , tj ∈ En(M) two transitions enabled at M. 
• We have shown that ∆(ti , tj ) < 0 implies that tj cannot fire before ti from . 
• The contraposition of this implication allows us to reach a conclusion:  

• that tj is firable before ti from α implies ∆(ti , tj ) ≥ 0. 

• A necessary condition for the firability of tj before ti from  is then ∆(ti , tj ) ≥ 0. 
• The permissive condition of , denoted by PC(α), is defined by: 

It is a necessary condition for the firability of all transitions enabled at M.

Adding the PCs of the legal symbolic markings to the DPCs of the dangerous symbolic 
markings will discard some less permissive solutions for the TBDP problem. 

However, all the kept solutions are not necessarily maximally permissive.
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SRG analysis of PN2 example 

PN2 

P

SRG of PN2
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SRG analysis of PN2 example 

The conjunction of the deadlock preventing
conditions with the permissive conditions is
consistent and provides for this example a set of
maximally permissive solutions for the TBDP
problem.

This set is defined by :
0 ≤ ai ≤ bi
b3 < a6 ≤ b2 ∧ b4 < a1 ≤ b5 ∧ a5+a6 ≤ b1 ∧ a1+a2 ≤ b6.
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Handling repetitive sequences 

• The finiteness of the SRG is not guaranteed even for bounded PN
• Indeed, the SRG is infinite for any bounded Petri net that has at least one

marking 𝑀 with a repetitive firing sequence 𝜔 keeping one transition continuously
enabled while another is alternately disabled and enabled.

• This situation generates an infinite number of distinct timing constraints along 
a loop-free path, leading to infinitely many symbolic states.

• To guarantee the finiteness of the SRG, exploration of any infinite loop-free path 
(e.g., 𝛼0𝜔0𝛼1𝜔𝛼2𝜔𝛼3𝜔𝛼4 … ) is restricted to a finite prefix, such as 𝛼0𝜔0𝛼1𝜔𝛼2𝜔𝛼3.

• By using this over-approximation of symbolic markings, the length of every loop-
free path in the resulting SRG is bounded.

• This ensures a manageable, finite state space for analysis, even when the 
original SRG might be infinite.
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TPN with controllable/uncontrollable transitions
• The two proposed approaches (parametric model checking and the SRG approach ) can

be easily extended to address the TBDP problem where a TPN with
controlled/uncontrolled transitions is used as the input model.

• In such a context, the TBDP problem consists in deciding whether the static firing
intervals of the input TPN's controllable transitions can be restricted so as to enforce
deadlock-freeness.

• With parametric model checking approach, the input model is a parametric TPN, where the
static firing intervals of uncontrollable transitions are fixed, while the others are
parametric intervals.

• With the SRG approach, the deadlock prevention conditions are calculated by taking into
account the exact values of the bounds of the firing intervals of uncontrollable transitions,
and adding, for each controllable transition ti, the constraint ↓ Is(ti) ≤ ai ≤ bi ≤↑ Is(ti). Finally, the
same process is applied for permissive conditions
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Conclusion

• we study the problem of deciding whether or not there exists a deadlock-free 
TPN extension for a given bounded PN (TBDP problem). 

• We first formulate the TBDP problem as a parametric model checking
of a parametric TPN.

• We show that this problem is decidable but suffers from a severe state
explosion problem caused mainly by firing order constraints.

• In a second step, to cope with this state explosion problem, we proposed
a symbolic approach, where the firing order constraints are abstracted
to keep only the constraints between transitions and their parents.
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Conclusion

• Compared with the existing untimed PN deadlock prevention methods, the main
advantages of TBDP are:

• an important gain with respect to the cost of control places which are
implemented as cost devices while for TBDP, we use timers (less expensive).

• we can exploit better parametrization of the TBDP method if time constraints are
modified.

• The TBDP method is the same with or without uncontrollable transitions
• it is not the case with untimed PN deadlock prevention methods, which require

modifications in the case of uncontrollable transitions
• Limits 

• TBDP methods don't automatically provide the most permissive solutions. 
•  SRG approach

• Deadlock preventing condition of a dangerous marking is sufficient but not 
necessary to prevent reaching the deadlock

• The finiteness of the SRG is not guaranteed even for a bounded PN
33
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Current and Future work

• We  focus on the improvement of the SRG approach especially 

• by adapting and integrating the partial order reduction techniques 
developed for PN and TPN. 

• by investigation of a weaker deadlock preventing conditions

• by computation of a finite over-approximation of the symbolic 
markings in the case of infinte SRG.
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