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Discrete Event Systems

* Dynamic systems whose state changes only at distinct moments in time, triggered by the
occurrence of discrete events.

* Key application areas include : RAS , Workflows, Manufacturing, logistics,
transportation, telecommunications, computer networks, robotics, healthcare, and more.

* These domains often involve concurrency, conflict, and causal relationships among
events, which can frequently lead to situations where further progress is blocked.

* For this reason, families of Petri nets are widely recognized as highly effective and
efficient tools for modeling and simulating the dynamic behaviors present in these
kinds of systems.
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DES Behaviour

* The behavior of a system is determined by both external and internal events..

* Controllable events are those that a controller can enable or disable, and they are
typically observable.

* Uncontrollable events occur spontaneously, cannot be prevented by the controller,
and may or may not be observable.
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Key behavioral properties of Petri nets

* Boundedness : ensures that number of system states or resources remains within a finite
limit, preventing uncontrolled growth or overflow.

* |ltis decidable, with EXPSPACE-complete complexity

Liveness : guarantees that, from any reachable state, each transition can eventually
occCur.

* Also decidable, with EXPSPACE-complete complexity.
* certain subclasses of nets allow polynomial-time verification.

* Deadlock-freeness means that, in every reachable state, at least one transition remains
enabled.

Liveness implies deadlock-freeness, but not vice versa.
Deadlock : occurrence of states in which the system is totally blocked.

Livelock: system keeps changing state but makes no progress.
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Around deadlock state

* A deadlock marking/state is a marking/state with no enabled transitions.

* A bad marking is a marking that leads eventually to deadlock markings.
* Adeadlockis then a bad marking.

* A dangerous marking is a marking such that among its successors, there is, at least, a
bad marking and, at least, a not bad marking.

* Alegal markingis neither a bad nor a dangerous marking.
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Deadlock control problem

The deadlock control problem seeks to prevent deadlocks and ensure liveness,
especially in Petri net models

* Literature classifies deadlock control methods into three strategies.

 Dedlock detection and recovery
e Detect and resolve deadlock when it occurs

* Deadlock avoidance
* An online control policy selects feasible system actions to avoid deadlocks.

* Deadlock prevention
* An offline policy sets constraints to prevent system deadlocks.

Using both structural and state-space analysis
(reachability graph, siphons, resource circuits, configurations, linear programming,..)
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Deadlock prevention methods

* State space analysis-based methods
* maximally permissive controllers

* prevent deadlocks without over-restricting system behavior thus maximizing
resource utilization

* cannot avoid the problem of state explosion.

* Structural methods (siphons in PN, circuits in graphic representation)
» efficient deadlock controllers but limited to specific Petri net subclasses
* does not need to analyze the state-space of the system
* Exponential growth in structural objects; highly time-consuming

* New method : Time-Based Deadlock Prevention (TBDP)

* Given a Petri Net N, , the TBDP problem asks whether deadlocks can be prevented by
assigning firing intervals that guarantee deadlock-freeness in a Time Petri Net N.

* This may restrict transition sequences and make some markings unreachable.
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Time Petri Net and its semantiCS (Boucheneb &al 2013)

* Formally, a TPN is a tuple (P,T,Pre,Post,MO0, Is) where :

 (P,T,Pre,Post,M0)is a Petri net
* Isis a static firing interval function (Is : T 2> INT)

* The static firing interval [ai , bi ] of ti specifies its minimal and maximal firing delays (relatively to
its enabling date).

* Whentiis newly enabled, I (ti)=[ai, bi]

. ]Ic?gqunds of I(ti ) decrease synchronously with time until ti is fired or disabled by a conflicting
iring.

e tiisfirable,if ¥ 1(ti)=0.
* |t mustfire immediately, when | (ti ) =0, unless it is disabled.

* lts firing takes no time but leads to a new marking.

* Petrinets can be viewed as Time Petri nets in which each transition carries static interval [0,o9].
* So deadlock- control under timing constraints is realistic
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Continued...

* Fora TPN N, a state s is the pair (M, /) ,where M is a marking and [ assigns firing intervals to all
enabled transitions at M. (I: En(M) — INTp+)
 Let (M, I) ,(M’, I’) two states, dh € R+ a nonnegative real number, t €T a transition and 2 the
transition relation over states that consists of continuous ( time progression) and discrete

transitions ( firing progression)

dh /

 Continuous transition : S — § iffs’'isreachable from sin dh time units i.e.,

Vt eEn(M),dhs M (t), M'=M and Vt'€En(M"),I'(t")=[Max(0,VvI(t")-dh), I (t')-dh].

 Discrete transition: S —t> ,5*" iftis immediately firable from s and its firing leads to s’, i.e.,
t eEn(M),VvI(t)=0,Vp € P, M'(p)=M(p)-Pre(p,t)+Post(p,t) and
Vt'eEn(M'"),I'(t') = Is(t') ift' € Nw(M,t) ,I(t") otherwise.

Property : If the lower bounds of the firing intervals are all 0 or the upper bounds of the firing
intervals are all oo then TPN preserve the firing sequences and the markings of underlying PN.
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Analysis of TPN Behavior

* Time Petri nets generate infinitely many possible successor states, since transitions can
fire at any moment within their specified firing intervals.
* As aresult, itis not possible to fully capture their behavior using a standard state reachability graph.

* Ingeneral, the problems of reachability, boundedness, and liveness are undecidable for Time Petri
nets

* To address this challenge, verification relies on state space abstraction techniques.

» States that are reachable by the same firing sequence are grouped together into sets, according to an
equivalence relation—these are known as state classes or state zones.

* These abstract sets make it possible to analyze Time Petri nets by providing finite representations of
their infinite state spaces, as long as the nets are bounded.

* The State Class Graph (SCG) : This method groups states that are reachable by the same firing
seqguence into state classes—equivalence classes defined by a common marking and a set of timing
constraints known as the firing domain (Berthomieu & al. 91).

« SCGisfinite if and only if the TPN is bounded, a sufficient condition is that the underlying Petri net is bounded
* |ts complexity is PSACE-complete (Boucheneb & al 2009).
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Main Steps of the SCG Method (gerthomieu&al. 91, cScG Boucheneb & al 08)

* Initialization:

e Start from the initial marking M, and firing domain D, ,which expresses the bounds for all initially
enabled transitions: a(t) < x; < b(t).

State Class Construction:
* Foreach currentclass (M’ D) ,consider each enabled transition.

* Apply the firing rules: when a transition t fires, update the marking and the constraints for enabled
transitions. For transitions remaining enabled, preserve their clock values; clocks for newly enabled
transitions are reset to zero.

Successor Classes:

« Compute successors for all firable transitions, generating new classes (M"» D") corresponding to post-
firing markings and updated firing domains.

Equivalence and Abstraction:

* Group together states that share the same marking and satisfy eguivalent firing domains. Only distinct
classes are kept in the graph, making it finite if the net is bounded.

Iteration:
* Repeatthe process for all reachable classes, expanding the graph until no new classes are generated.
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State Class Graph : an example from G. Berthomieu , MSR 2001

class c0 cl c2 c3 c4
marking p0, p4 p0, pd p2, Pd p3, pd pl, pd
firing domain | 5 <¢ <7 |0<t0<0|2<t<3 0<t2<2
3<t0<5|10<L11 <0
3<tl <5
class cH c6 c7 c8
marking p2, p4 p3 ., pd P2, pd pl  pd
firingdomain | 2 <t <3 |0<¢t <2 |0<t<3|0<t <4
0<t <4 0<t2<2
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TBDP : A Parametric model- checking problem

Parametric model-checking involves determining whether there are parameter values for
which a parametric model satisfies a given property, and, if so, identifying all such
parameter values.

* The TBDP is formulated as a parametric safety model-checking problem in which :

* the input model parametric TPN is a Petri net extended with 2 X| T |distinct, non-
negative integer parameters, where each parameter represents either the lower or
the upper bound of a transition's firing interval.

* the safety property to be verified is deadlock-freeness.

* Due to the inclusion relationship between TPN extensions,

 the TBDP problem can be reduced to deadlock prevention by associating to each
transition a single (parametric) firing interval (i.e.a=b).

* Asresult, the number of parameters reduced by half.
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TBDP problem : decidability and complexity

* The reachability problem for parametric TPN is shown to be not decidable, even for
bounded parametric TPN. (Traonouez, L & al, 2018)

* However, for the subclass known as L/U bounded parametric TPNs, where the
parameters defining the lower bounds of firing intervals are entirely distinct from those
of the upper bounds, the reachability is decidable. (Traonouez, L & al, 2018)

* This also holds for the bounded parametric TPNs used in the TBDP problem.

* Moreover, any L/U bounded parametric TPN can be converted into an equivalent
timed L/U parametric timed automaton, for which reachability analysis is PSPACE-
complete (Hune, T. & al, 2008).

Theorem : The TBDP problem is decidable and PSPACE-complete for bounded PN
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Example 2

Consider model PN1 and its marking graph at Fig.1. To deal with TBDP problem for PN1:
* we associate with each transition t; of PN1, a parametric interval [a;; b,]
* the safety property AG not deadlock (i.e all reachable markings are not deadlock).

;"l'f{) = 2})0

M= 2p; My=p1+p> Ms=2p,

(a) PN1 (b) Marking graph of PN1
Fig. 1. Model PN1 and its marking graph

We then use the parametric model checker Roméo to compute the parametric state
class graph (PSCG) in a similar way as the non-parametric case (Lime D & all 2009)
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C Marking Parametric constraints

Co 2po a1 < t1 < by ANag <tz < bog ANaz < ba

(&5} Po + P1 a; <t1 < by ANag < ba Aag < ban
az — by < to < bs —ai Naz < ba
Co ro + p2 a1 —ba < t; < by —aon
az < to < ba ANazx < by

Ca 2p1 ay < by AN2a3 < b ANag < by Aag < bg
Cy Pp1 + p2 ay < by ANay < ba Aas < 2b1A
ag < bo Nag < t3 < by
Cs P1 + P2 a1 < b1 AN ag < 2ban
ag < by Nag < ba Aag < i3 < by
Ce 2p2 a1 < by AZ2a; < by Aax < by Aag < by
Cr 2po a1 < t1 < by ANag < o < ban

a1 < ba A aa < 2b1 A ag < ba

Cg 2po a; <t3 < by,as < to < bon
ay < 2bg Nag < by ANag < by

Cg Po + p1 a; <t; < by Nas —by <to < by —ain

a1 < bo Mas < 2by AN as < bo A ag < ba

Cio Po + p2 ap —by < t; <bj; —as Aag < to < bon
ay <by Aay Tba Aaz < by Aaz < ba

C11 ro + P1 a; < t1 < by ANtg < by —ain
a1 <ba A0 < asx <by ANas < bas ANag < bs

Cio PO + P2 ap —ba < t1 < by —asArag <by Aag < b
ag < to < ba A ay < 2bs Aaz < bs

C'13 2p1 a1 < by A 2a1 < bg Aags < 2b1A
as < bo Aaz < b

Cia p1 + p2 a1 < by Aay < ba Aag £ biA
ay < bop Aag < by

Cis 2po a1 < by Aay < ba A2ag < bin

as < bo A ag < by

Cie 2pi1 a1 < by A2ay < bo Aag < bin
as < bo A asg < ba

Cir 2po a1 < by Aag < 2bg A 2an < biA
az < by Aaz < bs

Clis 2po a1 < t1 < by Anag < ta < ban

a; < bo Aag < by Aag < ba

Clho Po + p2 t1 < by —as ANas < tag <banay <bhiA
a1 < bo Aas < by ANag < by Aag < by

PSCG of the parametric TPN of PN1 20 Parametric state classes of the PSCG
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The solution

* The parametric model checker Romeo verifies that the deadlock-free property holds for
the following parameter domain D:

D ={(a1, a2, a3, b1, b2, b3) EN® | a1=b1<2a2 A a2=b2<2al A a3=hb3}.

Each value in D defines a TPN extension of PN1 that remains free of deadlocks.

The constrain b1<2a2 and b2<2a1 ensure that two consecutive firings of transitions t; and t, cannot occur

* Different solutions correspond to controllers with varying levels of permissiveness.

* The solutional=b1=3,a2=b2=4anda3=b3="1yields a TPN, where the markings
M2, M3 and M5 are not reachable.

* The solutional =b1=a2=b2=4and a3 =b3 =1 preserves all, and only all, paths of
PN1 that are free from bad markings. It is then maximally permissive

17
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Parametric model checking approach issues

How can PSCG's state explosion problem be significantly mitigated?

* This proliferation of states mainly occurs because different interleavings of the same transitions
typically produce distinct (parametric) state classes or firing domains

* Propose mitigation strategies to eliminate unnecessary distinctions between firing orders that
result in identical behavioral outcomes.

* the number of explored state classes can be significantly decreased.

* How to identify permissive conditions?

* We seek solutions that are maximally permissive, imposing the fewest possible restrictions on the
model's behavior.

* What conditions ensure that only undesirable transitions are prevented from firing, so that all
acceptable behaviors remain allowed?

* use inequalities and parameters to describe all possible states reachable within specific
timing constraints.

To address these challenges of the TBDP problem, we propose a symbolic approach.
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Symbolic approach to deal with the TBDP problem

This approach consists of a depth-first search (DFS) of a symbolic reachability graph
(SRG) of the input PN.

* Two main advantages of exploring SRG of a given PN instead of SCG (parametric) of its
extended TPN (parametric)

* Effective mitigation of PSCG state explosion:

* Unlike the State Class Graph (SCG), the Symbolic Reachability Graph (SRG)
groups all interleavings of the same transitions into a single marking.

* This greatly reduces redundant state exploration.

* Elimination of time constraints tied to firing order

. Ur:jlike the SCG, the SRG eliminates unnecessary distinctions related to firing
order.

* This avoids costly manipulation of parametric time domains and makes
the lanbaclysm. of larger or more complex systems significantly more
scalable.
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Construction of the symbolic reachability graph (SRG)

The firing delay interval of each transition t; is represented symbolically by [a., b;], where a,
and b, are two non-negative integer parameters such thata, < b..

The SRG is computed based on a DFS exploration (i.e., exploration path-by-path).

During the exploration of the SRG, the kind of each marking M is determined and recorded :
bad, dangerous or legal

* We denote by parent of an enabled transition t, the fired transition that has enabled t.

Some upper bounds of the distances between the firing dates of transitions enabled at M are
computed and saved as linear combinations over the set of parameters Pr and denoted by A :

A symbolic marking is defined as a couple a = (M, A)
The initial symbolic marking is a, = (M,, 8,), where M, is the initial marking and
forallt, t' € En(M,), Ay(t, t')=b - a'
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Construction of the symbolic reachability graph (SRG)

* Starting from the initial symbolic marking o, =(M,, 4,), , the successor symbolic
markings are computed using the followmggﬂrlng rule:

* Leta=(M, A) be a symbolic marking and t; a transition firable from a
* its successor symbolic markingis o’=( M’ A’) such that:
M'= M — pre(ty) + post(ty) and
vt t' € En(M'), A'(t,t') =
(b —da if t,t' € Nw(M,ty)
b+ A(ty,t') ifte Nw(M,tf) Nt' & Nw(M,ty)
A(t,ty) —a’ ift¢g Nw(M,tf) Nt' € Nw(M,ty)
(A(E,t) otherwise

N

* Note that t; is the parent of all transitions within NW(M t.)and A' (t, t') is an upper bound
of the distance between the firing dates of tand t'

* Therefore A(t,t')<0= (t'cannot occur before tfrom o).

* AL, t') <0 a sufficient condition that ensures thatt ' cannot occur before t from o in
the parametric TPN

* By contraposition (t' can occur beforetfroma)= A(t,t')=0
* A(t,t')=0is anecessary condition of t' can occur before t from a

21
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Construction of the symbolic reachability graph (SRG)

SRG of PN1
It consists of six symbolic markings
PN1 The markings M, and M; are bad.
The markings M, and M, are dangerous.
M, and M, are legal.
(its PSCG contains 20 state classes)
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SRG analysis : Deadlock preventing conditions

* Atransitiontenabled at a dangerous marking M is said to be bad iff the successor
marking of M by tis a bad marking.

* The marking M has a non-empty set of bad output transitions, denoted by O(M),
otherwise, it is legal

* Let a dangerous marking M of a symbolic marking a = (M, A)

* The bad output transitions of M cannot occur in case for each bad transition t  of
O(M), there Is, at least, a non bad transition t in En(M) — O(M) that must be fired
strictly before t, from a.

* We denote by DPC(a) the deadlock preventing condition of o = (M, A) defined by:

A\ \V/  Alts,to) <O0.

to€O(M) ¢ cO(M)

Collogue MSR25 - Reims 19 novembre 2025 23



SRG analysis : Deadlock preventing conditions

* Given a PN, the preventing condition of a reachable dangerous marking M is the
conjunction of the DPCs of all reachable symbolic markings that share the same
marking M.

* |[f the conjunction of all the DPCs of the dangerous markings is consistent, then the

TBDP has, at least, a solution and this conjunction characterizes a set of solutions for
the TBDP problem.

* Note that the deadlock preventing condition of a dangerous marking is sufficient but not
necessary to prevent reaching the deadlock markings.
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SRG analysis of PN1 example

* There are, in the dangerous marking M, of o, two enabled transitions t, and t, but
only t, is bad.

* The deadlock preventing condition of o, is then A,(t, , t;) <0, which is equivalent to b, < 2a,.
It guaranties that, in a.,, the firing date of t, is strictly larger than the firing date of t..

* Similarly, in the dangerous marking M, of a,, among the two enabled transitions
t,and t,, only t, is bad.
* The deadlock preventing condition of a, is then A,(t,, t,) <0, which is equivalent to b, < 2a,.

* The conjunction of the deadlock preventing conditions of o, and o, (i.e., b, <
2a,/\ b, <2a,) with the basic constraints (i.e.,0sa,<b,A0<a,<b,A0<a;<Db,)
characterizes a set of deadlock-free TPN extensions of PN1.
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SRG analysis : Permissive conditions

* The SRG can provide different solutions for the TBDP problem that impose
different restrictions on the behaviour of its input PN model.

* Among these solutions, we are interested in those yielding less restriction in the
behaviour of the input model (i.e., more permissive solutions).

* In this sense, we introduce the permissive conditions which are necessary
conditions for the firability of all the enabled transitions of the legal symbolic
markings
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SRG analysis : Permissive conditions

* Leta=(M, A) be a symbolic marking and t;, t;€ En(M) two transitions enabled at M.
* We have shown that A(t;, t;) <0 implies that t; cannot fire before t; from a.

* The contraposition of this implication allows us to reach a conclusion:
* thatt;is firable before t; from a implies A(t;, t;) 2 0.

* Anecessary condition for the firability of t, before t; from a is then A(t;, t;) 2 0.
* The permissive condition of o, denoted by PC(a), is defined by:

A Altity) >0.

ti,ﬁj EETL(I\J)

Itis a necessary condition for the firability of all transitions enabled at M.

Adding the PCs of the legal symbolic markings to the DPCs of the dangerous symbolic
markings will discard some less permissive solutions for the TBDP problem.
However, all the kept solutions are not necessarily maximally permissive.
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SRG analysis of PN2 example

ag : Mg = 2pg + 2ps + 71 + T2 + Ps,
Ag(ti,te) = by — ae, Ao(te,t1) = bg — a1.
a1 1 My = po + p1 + 2ps + 12 + pe,
Aq(tz, te) = bz — ae, A1(te,t3) = bg — az.
a2 : M2 = 2po + pa + ps + 71 + pe,
Az(tl,t4) = by — (14,A2(t4,t1) = by — ar.
ag : M3 = po + p3 + 2ps + 71 + psé;
Az(ty,t5) = b1 — a5, Az(ts,t1) = bs — a1.
aq: Ms =po+p1+ps+ps+ps.
as 1 Ms = 2po + p2 + ps + 72 + ps,
As(ta,te) = b2 — as, As(te,t2) = bg — az.
ag : Mg = p1 + p3 + 2ps + ps.-
ar 1 M7 = 2po + p2 + pa + pe.
PN2 ol : My = Mg = 2po + 2ps + 71 + 72 + ps.
A{)(tl,ta) =by —as — as,Aa(tﬁ,tl) = bg + bs — a.
agy : M = Mo = 2po + 2ps + 11 + 72 + ps.
Al (t1,te) = by + bz — ag, Aj (te,t1) = bg — a1 — az.

SRG of PN2

Collogue MSR25 - Reims 19 novembre 2025 28



SRG analysis of PN2 example

Table 2

DPC of the dangerous markings of PN2

Dangerous M|En(M)| O At t) DPC
M {t3,te }{te }|A1(t3,t6) = b3 — agb3 < as
My {t1,ta}{t1 }A2(ta,t1) = ba —a1ps < a1
Table 3
PC of the legal markings of PN2
Legal M AL, ) PC
Ao (te,t1) = bs — a1 a; < bg
My
Ag(t1,t6) = b — ag A ag < by
Ap(t1,te) =b1 —as5 —as| a5 +ae < by
M = My
Aj(te,t1) = bs +be — a1 |A a1 < be +bs
Aj (t1,t6) = b1 + b2 — ae| a1 + a2 < be
MY = My
AY(te,t1) = bs — a1 — az|A ag < by +bo
Asz(t1,t5) = b1 —as a1 < bs
M3
Ag(t5,t1):b5—a1 A as < by
As(ta,te) = b2 — ap a2 < be
M5
As(ts,t2) = bg — a2 A ag < bo

The conjunction of the deadlock preventing
conditions with the permissive conditions is
consistent and provides for this example a set of
maximally permissive solutions for the TBDP
problem.

This setis defined by :
O=ai=shi
b3<ab=b2Ab4<al=b5Aab+a6b=b1Aal+a2=bé6.
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Handling repetitive sequences

* The finiteness of the SRG is not guaranteed even for bounded PN

* Indeed, the SRG is infinite for any bounded Petri net that has at least one
marking M with a repetitive firing sequence w keeping one transition continuously

enabled while another is alternately disabled and enabled.

* This situation generates an infinite number of distinct timing constraints along
a loop-free path, leading to infinitely many symbolic states.

* To guarantee the finiteness of the SRG, exploration of any infinite loop-free path
(e.8., Agwoa WA, wWA3WA, ...) is restricted to a finite prefix, such as ayw a;wa,was;.

* By using this over-approximation of symbolic markings, the length of every loop-
free path in the resulting SRG is bounded.

* This ensures a manageable, finite state space for analysis, even when the
original SRG might be infinite.
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TPN with controllable/uncontrollable transitions

* The two proposed approaches (parametric model checking and the SRG approach ) can
be easily extended to address the TBDP problem where a TPN with
controlled/uncontrolled transitions is used as the input model.

* In such a context, the TBDP problem consists in deciding whether the static firing
intervals of the input TPN's controllable transitions can be restricted so as to enforce
deadlock-freeness.

* With parametric model checking approach, the input model is a parametric TPN, where the
static firing intervals of uncontrollable transitions are fixed, while the others are
parametric intervals.

 With the SRG approach, the deadlock prevention conditions are calculated by taking into
account the exact values of the bounds of the firing intervals of uncontrollable transitions,
and adding, for each controllable transition t, the constraint ¥ Is(t) < a, < b, =1 Is(t). Finally, the
same process is applied for permissive conditions
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Conclusion

* we study the problem of deciding whether or not there exists a deadlock-free
TPN extension for a given bounded PN (TBDP problem).

* We first formulate the TBDP problem as a parametric model checking
of a parametric TPN.
* We show that this problem is decidable but suffers from a severe state
explosion problem caused mainly by firing order constraints.

* |[n a second step, to cope with this state explosion problem, we proposed
a symbolic approach, where the firing order constraints are abstracted
to keep only the constraints between transitions and their parents.
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Conclusion

* Compared with the existing untimed PN deadlock prevention methods, the main
advantages of TBDP are:

e an important gain with respect to the cost of control places which are
implemented as cost devices while for TBDP, we use timers (less expensive).

* we can exploit better parametrization of the TBDP method if time constraints are
modified.

 The TBDP method is the same with or without uncontrollable transitions

* it is not the case with untimed PN deadlock prevention methods, which require
modifications in the case of uncontrollable transitions

* Limits
* TBDP methods don't automatically provide the most permissive solutions.
* SRG approach

* Deadlock preventing condition of a dangerous marking is sufficient but not
necessary to prevent reaching the deadlock

* The finiteness of the SRG is not guaranteed even for a bounded PN
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Current and Future work

* We focus on the improvement of the SRG approach especially

* by adapting and integrating the partial order reduction techniques
developed for PN and TPN.

* by investigation of a weaker deadlock preventing conditions

* by computation of a finite over-approximation of the symbolic
markings in the case of infinte SRG.
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