
Formal Methods for Safe Moving-Block Route Management

Araaf Recta1, Rim Saddem-Yagoubi2, Julie Beugin1, and Mohamed Ghazel1

1 Univ. Gustave Eiffel, COSYS, ESTAS, F-59650 Villeneuve d’Ascq, France
araaf.recta@univ-eiffel.fr, julie.beugin@univ-eiffel.fr, mohamed.ghazel@univ-eiffel.fr

2 Aix Marseille Univ, CNRS, LIS, Marseille, France rim.saddem@lis-lab.fr

Abstract

Railway control-command and signalling systems are safety-critical, as failures can
result in significant losses, making formal verification essential to ensure safety. In this
context, we present a formal model for analysing the future Moving Block (MB) safety of
the European Train Control System (ETCS), focusing on train route management. These
models have been developed using UPPAAL Timed Automata, combining those from the
PERFORMINGRAIL project with newly designed trackside control models.

1 Introduction

The European Train Control System (ETCS), as part of the broader European Rail Traffic
Management System (ERTMS), is transitioning toward the Moving Block (MB) concept to
enhance railway capacity and operational flexibility. Unlike traditional Fixed Block systems,
which rely on fixed track segments for train separation, MB systems enable trains to follow each
other at dynamically adjusted speeds, maintaining only the minimum safe braking distance.
This approach allows for reduced headways between trains, hence increasing network capacity.

However, this increased flexibility introduces new challenges for safety assessment, partic-
ularly with regard to train routing management and track switch control. In this context,
this article focuses on the Full Moving Block operation of ETCS, with particular attention to
the main MB trackside control function, namely the Route Management and its related
functions, and their integration within the overall system architecture. Our objective is to
contribute to the ongoing development of reliable and scalable formal verification frameworks
for MB systems.

2 Methodological background

Functional models on previous project, PERFORMINGRAIL, were tested modularly rather
than as a fully integrated system. Some functions, especially those related to Route Man-
agement (RM), are still missing and have not yet been fully developed, preventing system
integration. Four new automata must be developed, namely RM, Reserved Status Manage-
ment, and Point Management (Global and Local). In so doing, we use UPPAAL for model
implementation and analysis. UPPAAL offers features for modelling temporal aspects, modu-
larity, and parametrisation, and it aligns well with our prior experience. To verify the model,
a scenario has been done as shown in Figure 1.

3 Formal Model Verification

To verify the avoidance of hazardous events such as a train not maintaining a safe distance from
other trains, or a point being moved in an Unknown/Occupied/Reserved state with a train over

Formal Methods for Safe Moving-Block Route Management Recta et al.

Figure 1: Case study with route sequence: route 0 (0 s), route 1 (150 s), route 2 (300 s)

it (or about to pass over it), we formulate two different properties to be verified in our formal
models. Liveness properties guarantee system progress by ensuring that trains can complete
their assigned routes and that operations proceed as expected over time, including the evolution
of train positions and speeds. Safety properties ensure that the system avoids the identified
hazards, ensuring the absence of critical events such as collisions arising from overlapping of
Track Status Area (TSA) or Reserved Status Area (RSA), violations of Movement Authority
(MA) boundaries, or incorrect point positions. Fig. 2

Figure 2: TSA (left), RSA of trains(middle), and point position (right)

From Table 1, it can be observed that the free collision property is verified. Using the
existential property (E<>), it can be concluded that the collision state is not reachable. On the
other hand, the safety of point movement is always guaranteed through the universality check
(A[]), which indicates that the point moves only after it is free from other trains.

Description UPPAAL Syntax Reachability
Is it possible that the track status of one
train overlaps with that of another?

E<>(TS TSM0.GoToASafeState ||

TS TSM1.GoToASafeState || TS TSM2.GoToASafeState)

Is it possible for a train’s MA to exceed
its RSA?

E<>(TS MA0.GoToASafeState ||

TS MA1.GoToASafeState || TS MA2.GoToASafeState)

Is it possible that the communication
session expire?

E<>(TS CM0.GoToASafeState ||

TS CM1.GoToASafeState || TS CM2.GoToASafeState)

Is the point always locked for Train 1
after it is free from Train 0 and always
locked for Train 2 after it is free from
Train 1 ?

A[]((TS PML B0.PointPositionReverse

imply not TS RM0.PointNotFree) &&

(TS PML C0.PointPositionReverse imply not

TS RM1.PointNotFree))

Table 1: UPPAAL property descriptions and verification results

2

Modeling and Simulation of a Green Manufacturing System
using Petri Nets

Yasmine Bel Hadj Salah1, Hussein Koussan2, Naly Rakoto3

Abstract— Green Supply Chain Management (GSCM) inte-
grates sustainability into supply chains, with Green Manufac-
turing emphasizing waste reduction, energy conservation, and
eco-design. This work deals with modeling and simulation of a
Green Manufacturing System using Petri Nets, a tool for op-
timizing dynamic processes. The Green Manufacturing System
comes from the Automotive Industry. Simulation results show
that addressing sustainability aspects in such a Manufacturing
System can only lead to some improvements in general.

Keywords: Modeling; Simulation; Green Manufacturing;
Sustainability, Petri Nets; Automotive Industry.

I. INTRODUCTION

In recent years, sustainability has become a critical focus
across industries, driven by concerns about environmental
degradation and the pressing need to mitigate climate change.
Green Supply Chain Management (GSCM) integrates envi-
ronmental considerations into traditional supply chain pro-
cesses to reduce costs, improve efficiency, and address key
ecological challenges.

Green Manufacturing, a key component of GSCM, em-
phasizes sustainable practices during production, including
eco-design, waste reduction, and energy conservation. These
strategies not only enhance environmental performance but
also improve product competitiveness and corporate respon-
sibility. To support the adoption of Green Manufacturing
Systems, modeling and simulation tools like Petri Nets are
crucial. Petri Nets enable the systematic analysis of dynamic
processes, identifying inefficiencies and opportunities for
optimization.

This research focuses on the application of Petri Nets to
model and simulate Green Manufacturing Systems, with a
particular emphasis on the automotive industry. The study
bridges the gap between theoretical concepts and practi-
cal applications, advancing sustainable manufacturing while
maintaining operational efficiency.

II. GREEN MANUFACTURING AND GSCM

Green Manufacturing integrates environmental principles
into production processes, aiming to reduce waste, conserve
resources, and lower carbon emissions. Early studies, such as
those by Beamon [1], established the foundations of GSCM
by emphasizing the need for eco-friendly supply chain

1 Y. Bel Hadj Salah is with IMT Atlantique, Nantes, France. (email:
yasmine.belhadjsalah@gmail.com)

2 H. Koussan is with IMT Atlantique, Nantes, France (email: Hus-
sein.s.koussan@gmail.com)

3 N. Rakoto is with IMT Atlantique and LS2N, Nantes, France (email:
naly.rakoto@imt-atlantique.fr)

practices. Subsequent research has explored methodologies
to optimize energy use, waste management, and emissions
reduction in manufacturing systems.

The concept of the Green Supply Chain was initially
introduced by the Institute of Manufacturing Research at
Michigan State University in their 1996 study entitled “En-
vironmental Responsible Manufacturing (ERM)” [3]. This
approach aimed to extend traditional supply chain operations
to incorporate recycling services, reuse, and remanufac-
turing, leading to the evolution of Green Supply Chain
Management (GSCM) [7].

GSCM consists of three primary components: Green
Design, Green Operations, and the Importance of Green
Supply Chain Management. Within Green Operations,
three key aspects are highlighted:

• Green Manufacturing and Remanufacturing
• Reverse Logistics and Network Design
• Waste Management

These strategies help companies reduce their ecological
footprint by reusing materials, adopting remanufacturing
processes, and improving waste management efficiency [12].

One of the major advantages of Green Manufacturing
is the ability to shorten product life cycles, which in turn
leads to lower production costs[6] and reduced material
consumption [6]. Throughout the 20th century, the auto-
motive industry emerged as a reference model for industrial
sectors worldwide, influencing supply chain management
methodologies. The rapid expansion of global markets facili-
tated the establishment of modern factories with advanced
production systems, particularly in emerging economies
[10].

Given this context, the objective of this paper is to model,
simulate, and analyze a Green Manufacturing method-
ology. By utilizing Petri Nets, this study aims to evaluate
and optimize sustainable manufacturing strategies, ensur-
ing an optimal balance between environmental impact and
economic performance in industrial applications.

III. PETRI NETS AND SUPPLY CHAIN MANAGEMENT

Petri Nets provide a graphical and mathematical frame-
work for modeling dynamic systems [2]. Murata [9] iden-
tified their properties, including reachability, boundedness,
and liveness, which make them particularly suitable for
complex systems like manufacturing. Recent studies, includ-
ing Kaiyandra et al. [8], have applied Petri Nets to inte-
grate sustainability metrics into simulation models, enabling

manufacturers to analyze and optimize their environmental
performance.

Petri Nets have been widely applied in modeling and
simulating supply chain management (SCM) systems. As
a mathematical and graphical tool, Petri Nets facilitate the
analysis of processes such as inventory control, production
scheduling, and transportation management. Their ability
to represent dynamic behaviors, synchronization, and con-
currency makes them suitable for complex supply chain
networks.

Studies have shown that Petri Nets provide a structured
approach to evaluating key performance metrics, including
throughput, efficiency, and bottleneck identification within
supply chains.[5] For instance, Kaiyandra et al. [8] demon-
strated that Petri Nets enable performance analysis in logis-
tics networks, allowing for better decision-making in opti-
mizing supply chain efficiency[4][5]. Furthermore, Colored
Petri Nets (CPNs) extend these capabilities by incorporating
environmental factors such as carbon emissions and energy
consumption, making them useful in Green Supply Chain
Management (GSCM).

Incorporating Petri Nets in supply chain modeling en-
hances visibility and control over operations, facilitating
strategic improvements and ensuring more sustainable prac-
tices. Their role in green supply chains is particularly crucial,
as they allow industries to optimize resource utilization,
minimize waste, and ensure compliance with environmental
regulations.

IV. GREEN MANUFACTURING SYSTEMS AND
SUSTAINABILITY METRICS

Green Manufacturing Systems (GMS) focus on incor-
porating sustainability principles into industrial production
processes to minimize environmental impact while maintain-
ing operational efficiency. These systems integrate strategies
such as energy conservation, waste reduction, eco-design,
and renewable resource utilization to create sustainable and
cost-effective manufacturing practices. By adopting Green
Manufacturing, industries can enhance resource efficiency,
reduce carbon emissions, and improve their overall environ-
mental footprint.

A key aspect of Green Manufacturing is the incorporation
of sustainability metrics, which provide a quantifiable assess-
ment of environmental performance. These metrics include
carbon footprint analysis, energy efficiency measurements,
water consumption tracking, and waste management eval-
uations. Petri Nets have proven to be an effective tool in
modeling and analyzing these sustainability metrics within
manufacturing systems. They allow for a structured represen-
tation of material and energy flows, enabling manufacturers
to identify inefficiencies and optimize processes.

For instance, in the Automotive Industry, Green Manu-
facturing Systems aim to reduce emissions from production
lines by implementing energy-efficient technologies and im-
proving supply chain logistics. Petri Net-based simulations
help assess different scenarios, such as the impact of switch-
ing to renewable energy sources or optimizing workflow

processes to minimize waste. The ability to model and test
various green strategies before implementation ensures that
manufacturers can make informed decisions that balance
sustainability with productivity.

By leveraging Green Manufacturing Systems and sus-
tainability metrics, industries can transition toward environ-
mentally responsible operations while maintaining economic
competitiveness. The application of Petri Nets in this domain
enhances the ability to analyze, optimize, and implement
green initiatives effectively, making them a valuable tool for
sustainable industrial growth.

V. SPECIFIC APPLICATIONS OF PETRI NETS IN THE
AUTOMOTIVE INDUSTRY

The automotive industry has been a key driver of industrial
innovation, with sustainability becoming a central focus in
recent years. As manufacturers strive to reduce their envi-
ronmental footprint while maintaining production efficiency,
Green Manufacturing Systems (GMS) have emerged as a
viable solution. These systems aim to integrate eco-friendly
practices into production lines, including energy-efficient
manufacturing, waste minimization, and optimized resource
management.

Oumer et al. [10] demonstrated the use of simulation mod-
els for green manufacturing and logistics in the automotive
sector, emphasizing the importance of data-driven decision-
making in sustainable manufacturing. Their study highlighted
how Petri Nets could be leveraged to model key sustainability
factors such as energy consumption, resource utilization, and
waste generation, providing actionable insights for sustain-
able practices.

Petri Nets allow for the detailed representation and anal-
ysis of dynamic processes in automotive production. They
enable the simulation of various scenarios to assess the
impact of different green manufacturing strategies. Some key
applications of Petri Nets in the automotive industry include:

• Energy Consumption Optimization: Petri Net models
help analyze energy-intensive processes such as weld-
ing, painting, and assembly, allowing manufacturers
to identify inefficiencies and implement energy-saving
measures such as solar power integration and process
reconfiguration.

• Waste Reduction and Recycling: By modeling mate-
rial flows within the supply chain, Petri Nets facilitate
the identification of excessive waste generation points.
This allows for the optimization of recycling strategies,
scrap material reuse, and waste treatment methods.

• Water and Emissions Management: Automotive pro-
duction involves significant water consumption, particu-
larly in the paint shop and cooling processes. Petri Nets
are used to simulate water recycling loops, wastewater
treatment efficiency, and emissions control systems,
ensuring compliance with environmental standards.

• Supply Chain and Logistics Efficiency: Petri Nets
aid in optimizing inbound and outbound l ogistics by
modeling transportation networks, material flow, and

inventory management. This helps manufacturers min-
imize delays, reduce carbon emissions, and streamline
just-in-time (JIT) delivery systems, ultimately improv-
ing overall efficiency in green supply chains.

• Process Synchronization and Bottleneck Identifica-
tion: In complex automotive production lines, ensuring
smooth synchronization between different departments
such as the body shop, paint shop, and assembly line
is crucial. Petri Nets enable the identification of bottle-
necks, allowing for adjustments in process sequencing
and resource allocation to enhance production through-
put while minimizing environmental impact.

• Quality Control and Defect Reduction: The rectifi-
cation shop plays a vital role in ensuring defect-free
vehicle production. Petri Nets help model and optimize
the defect detection, rework, and validation processes,
reducing material waste and improving overall product
quality.

One of the key advantages of using Petri Nets in the
automotive industry is their ability to incorporate sustain-
ability metrics into manufacturing simulations. By evaluating
various environmental parameters, such as carbon footprint
reduction and resource efficiency, Petri Net models support
decision-makers in adopting the most effective green manu-
facturing strategies.

VI. METHODOLOGY

A. Data Collection:

Data for this study was obtained from the paper ”Green
Manufacturing and Logistics in Automotive Industry: A
Simulation Model” [10]. Key data points include:

Category Before Green Policy After Green Policy Percentage Change

Water Consumption (m3) 2400 1680 30%
Wastewater Generation (m3) 1666.67 1250 25%
Solid Waste (kg) 835.23 735 12%
Electricity Consumption (kWh) 1,013,880 811,104 20%
CO2 Emissions (kg) 88,522.86 62,036 30%

TABLE I. Comparison of Metrics Before and After Green Policy
Implementation

This data was critical for evaluating the impact of green
manufacturing practices on resource consumption and emis-
sions reduction.

B. Departments’ Process flow:

The vehicle manufacturing process consists of multiple
departments, each responsible for a specific phase of pro-
duction. These departments work in sequence to ensure
efficiency, quality, and sustainability in the manufacturing
process. The following subsections describe each depart-
ment’s process flow in detail, focusing on key operations
and their significance.

1) Body Shop: The body shop is responsible for shaping
and assembling the vehicle’s structural framework. Figure 1
illustrates the workflow.

- Raw Material Processing: Metal sheets and other
structural materials are received.

- Stamping & Forming: These materials are pressed into
different vehicle body components.
- Joining Components (e.g., Welding): The formed parts
are assembled using welding techniques.
- Final Assembly: The complete vehicle frame is assembled.
- Inspection & Quality Control: The structure undergoes
quality checks.
- Storage: The completed body frame is stored before
proceeding to the next stage.

The CONWIP (Constant Work in Progress) system is
integrated to regulate workflow and prevent overproduction.
Material waste reduction and automation are key aspects
of efficiency in this phase.

Fig. 1: Body Shop Process Flow

2) Paint Shop: The paint shop is essential for vehicle
protection and aesthetics. Figure 2 illustrates the steps
involved.

- Surface Treatment: The vehicle body is cleaned and
primed.
- Painting Process: Multiple layers of paint are applied.
- Curing Process: Heat is applied to bond the paint layers.
- Final Paint Inspection: A thorough quality check is
conducted.

Sustainability efforts in the paint shop focus on water
recycling and energy-efficient curing techniques.

Fig. 2: Paint Shop Process Flow

3) Assembly Shop: The assembly shop integrates various
components to construct the vehicle. Figure 3 illustrates this
phase.

- Powertrain Assembly: The engine, transmission, and
related components are prepared.
- Internal & External Fitting: Components such as
dashboards, seats, and lighting are installed.
- Vehicle Assembly: The body and powertrain are
integrated.
- Testing & Validation: The vehicle undergoes initial
checks.

The assembly shop plays a key role in process efficiency
by optimizing resource use and reducing assembly time.

Fig. 3: Assembly Shop Process Flow

4) Rectification Shop: The rectification shop is respon-
sible for defect identification and correction. Figure 4
outlines the process.

- Defect Identification: Vehicles are inspected for
defects.
- Repair Process: Any identified defects are corrected.
- Revalidation Process: Vehicles undergo retesting.
- Decision & Shipping: If approved, the vehicle is cleared
for shipment.

Quality control in this phase is critical for customer
satisfaction and reduces material waste by prioritizing
repairs over discarding defective components.

Fig. 4: Rectification Shop Process Flow

5) Inbound Logistics: Inbound logistics ensures the
smooth flow of materials from suppliers to production lines.
Figure 5 presents the key steps.

- Raw Material Reception: Metal sheets, powertrain
components, and other necessary materials arrive at the
plant.
- Unloading: Materials are unloaded and logged into the
inventory system.
- Inspection & Quality Control: Each batch undergoes
quality checks.
- Storage: Accepted materials are stored for production use.

Optimizing storage and minimizing delays in inbound
logistics contribute to efficiency and waste reduction.

Fig. 5: Inbound Logistics Process Flow

Each of these departmental process flows ensures effi-
ciency and sustainability in the manufacturing system. The
structured workflow allows for process optimization, waste
minimization, and improved production quality.

In the next section, these processes will be represented
using Petri Net models, allowing for a detailed simulation
of the system’s performance and analysis of bottlenecks,
delays, and resource utilization.
The Petri Net Model -Fig. 6- represents the interactions
between these subsystems, illustrating the flow of materials,
energy, and waste across the manufacturing process.The
model, as previously discussed, integrates multiple depart-
mental processes and provides a comprehensive overview
of the system. it’s followed by a detailed examination of
its components through dedicated subsections, its places and
transitions -TABLE II-.

Places Transitions

P0 (A & B) = Body, & Powertrain Supplier T0 = Reception of raw material

P1 (A & B) = Inspection & Quality Control T1 = Inspection

P2 (A & B) = Unloading Area T3 (A & B) = Unloading

P3 (A & B) = Storage (Respectively) T4 (A & B) = Storing

P5 = Body Storage T5 = Stamping & forming

P6 = Stamped & Formed Sheets T6 = Joining Components (ex: Welding)

P7 = Joined Components T7 = Finally Body Assembly

P8 = Assembled Body T8 = Inspection & Quality Control

P9 = Body Inspection Zone T9 = Storing full Body

P10 = Body Storage T10 = Treating & Priming Surface

P11 = Surface treated & Primed T11 = Painting Process

P12 = Painted Body T12 = Curing Process

P13 = Cured Body T13 = Final Paint Inspection

P14 = Defect-free Painted Body T14 = Storing Painted Body

P15 = Painted Body Storage T15 = Assembling Powertrain Components

P16 = Powertrain Components Storage T16 = Internal External fitting

P17 = Assembled Powertrain T17 = Vehicle Assembly

P18 = Internally & Externally Fitted Body T18 = Vehicle Inspection

P19 = Assembled Vehicle Storage T19 = Vehicle Testing

P20 = Defect Identification Zone T20 = (No Defects Found) Shipping to Distributor

P21 = Testing Zone T21 = (Defect Found) Transferring to Defect Zone

P22 = Defect Checking Zone T22 = Repairing Defects

P23 = Defect Repair Zone T23 = (Defect Found) Going Back to Defect Repair Zone

P24 = Revalidation Zone T24 = (Defect Resolved) Shipping to Distributor

P25 = Distributor T25 = Demand From Distributor

TABLE II. Places and Transitions

VII. ASSUMPTIONS

Based on the observations from Table I, the following
assumptions and mitigation strategies were established for
each key environmental factor:

A. Electricity Consumption

With electricity usage accounting for a substantial share
of the overall energy demand, the following measures have
been considered:

• Integration of Renewable Energy: Partial reliance on
solar panels to reduce non-renewable energy consump-
tion.

• Optimization of Energy-Intensive Processes: Imple-
menting real-time energy monitoring and machine effi-
ciency improvements to lower consumption.

Fig. 6: Petri Net Model of the Manufacturing Process.

B. CO2 Emissions

Since CO2 emissions represent one of the highest environ-
mental concerns, mitigation strategies include:

• Electrification of Internal Logistics: Transitioning
from fuel-powered forklifts to lithium battery-powered
alternatives to minimize emissions.

• Enhancing Process Efficiency: Reducing idle times in
production lines and optimizing logistics routes to cut
emissions from unnecessary movements.

C. Solid Waste Management

Although solid waste has a lower percentage impact,
addressing its accumulation remains critical:

• Steel and Aluminum Recycling: Capturing and recy-
cling flakes/swarf, particularly in the assembly shop, to
minimize raw material waste.

• Sustainable Waste Handling: Implementing improved
sorting and compacting processes to enable easier waste
reuse or resale.

D. Water Consumption and Wastewater Treatment

Given the significance of water usage, especially in the
paint shop, targeted actions include:

• Implementation of Water Recirculation: Reusing
treated water to reduce freshwater consumption.

• Advanced Treatment Methods: Applying ozonation
combined with secondary treatment to enhance wastew-
ater purification efficiency while minimizing chemical
use.

These assumptions and mitigation measures provide a
foundation for improving the sustainability of the man-
ufacturing process, aligning with best practices in green
manufacturing.

VIII. SIMULATION AND RESULTS

The Petri Nets simulation was conducted to analyze the
effects of Green Manufacturing policies on energy efficiency,
waste reduction, and resource optimization. The model was
applied across different departments, including the Body
Shop, Paint Shop, Assembly Shop, Rectification Shop,
and Inbound Logistics.

Weights Body Shop Paint Shop Assembly Shop Rectification Shop Inbound Logistics Total

Electrical Consumption 5 3 6 1 2 17

Water Consumption 2 6 1 1 0 10

Waste Water 1 6 1 1 0 9

CO2 Emissions 5 5 5 4 3 22

Solid Wastes 1 1 3 0 3 8

TABLE III. Weights Per Department Before Green Policy

A. Example Petri Net Model: Assembly Shop

The Assembly Shop is a crucial stage in automotive
manufacturing where different vehicle components are inte-
grated to form a complete automobile. The Petri Net model
for the Assembly Shop simulates the stepwise transition
of vehicle components through various assembly processes,
ensuring optimization in material flow, energy use, and waste
reduction.

Fig. 7: Assembly Shop Petri Net Model

B. Places and Transitions in the Assembly Shop Petri Net
Model

Places Transitions

P1 = Engine Components T1 = Power Train Assembly
P2 = Assembled Power Train T2 = Interior/Exterior Fitting
P3 = Fitted Interior + Exterior Parts T3 = Vehicle Assembly
P4 = Fully Assembled Vehicle T4 = Testing & Validation
P5 = Tested & Validated Vehicle
P6 = Body from Storage

TABLE IV. Places and Transitions in the Assembly Shop Petri Net
Model

C. Impact of Green Policy on the Assembly Shop Petri Net
Model

- Energy Efficiency: Improved by 30% due to optimized
assembly sequencing. - Waste Reduction: Enhanced scrap
reduction techniques lowered material waste by 25%. -
Carbon Emissions: Implementing optimized material flow
decreased CO2 emissions by 35%. - Water Usage: Improved
assembly processes reduced water consumption by 28%.

This Assembly Shop Petri Net model serves as an
example of how Petri Nets can be applied to optimize
green manufacturing strategies, ensuring sustainability
while maintaining production efficiency.

This section presents the performance comparison of our
Green Manufacturing model with an existing study, “Green
Manufacturing and Logistics in Automotive Industry: A
Simulation Model” [9]. Assuming a production r ate of 100
cars per day and 26 working days per month, our model
demonstrated significant improvements in key sustainability
metrics:

Metric Before Implementation After Implementation Percentage Change

Energy Consumption (units) 1916 1207 37%
Water Consumption (units) 954 548 42.56%
Wastewater Generation (units) 852 447 47.54%
CO2 Emissions (units) 2317 1257 45.75%
Solid Waste (units) 1206 903 25.13%

TABLE V. Simulation results showing improvements in
sustainability metrics after implementing Green Manufacturing

strategies

• Electricity Consumption (EC): Our model achieved a
37% reduction, which is 17% higher than the 20%
reduction in the comparison study.

• Wastewater Generation (WW): A 47.54% decrease,
approximately 22% higher than the 25% reduction in
the comparison model.

• Water Consumption (WC): Our model resulted in a
42.56% reduction, 12% higher than the 30% decrease
reported in the comparison study.

• CO2 Emissions (CO2): A 45.75% decrease, approx-
imately 15% higher than the 30% reduction in the
reference model.

• Solid Waste (SW): Our model observed a 25.13%
reduction, 13% higher than the 12% reduction in the
comparison study.

These findings highlight the effectiveness of our model in
improving sustainability performance and reducing environ-
mental impact in manufacturing operations.

IX. CONCLUSION AND DISCUSSION

The implementation of Green Manufacturing strategies
in our study has led to substantial environmental improve-
ments, exceeding industry benchmarks and previous litera-
ture expectations. To validate these findings, we conducted a
comparative analysis between our proposed improvements,

benchmarking reference data, and previous studies’ re-
ported improvements. This section critically evaluates these
comparisons and discusses key factors influencing the real-
world feasibility of these sustainability measures.

Fig. 8: Comparison of Paper, Solution Proposed, and Ex-
pected Improvements

A. Performance Analysis and Benchmarking Comparison

The figure above illustrates the percentage improvement
in sustainability metrics, comparing the expected im-
provements from literature and benchmarking standards
against our proposed solutions.

Focus Area Paper Improvement (%) Expected Improvement (%) Proposed Solution Improvement (%)

Water Consumption 30% 40% 42.6%
Waste Water 25% 35% 47.5%
Solid Waste 12% 20% 25.1%
Electricity Consumption 20% 30% 37.0%
CO2 Emissions 30% 35% 45.7%

TABLE VI: Comparison of Sustainability Improvements:
Paper, Expected, and Proposed Solution

B. Key Insights

1. Superior Performance Across All Metrics
• The proposed solutions consistently outperformed

both the expected improvements and previous studies,
validating their effectiveness in sustainability-driven
industrial applications.

• The largest gains were observed in wastewater reduc-
tion, where our model achieved a 47.5% improvement,
surpassing the expected 35% improvement and the
literature-reported 25%.

2. Benchmarking Validation
• The results align with sustainability standards, including

ISO 14001, U.S. EPA guidelines, and studies in
Energy Journal.

• Our CO2 emissions reduction (45.7%) significantly
exceeds both the reference and expected improvements,
showcasing the effectiveness of advanced energy-
efficient strategies.

3. Strategic Enhancements in Process Optimization
• The combination of renewable energy, waste re-

cycling, and process redesign has led to superior
performance compared to standard benchmarks.

• Our solid waste reduction (25.1%) is a notable im-
provement over the reference value (12%), demonstrat-
ing efficient material utilization techniques.

4. Economic and Scalability Considerations
• While the improvements are promising, their economic

feasibility needs further exploration to assess cost-
effectiveness at a large scale.

• Future research should analyze return on investment
(ROI) for implementing these solutions across various
manufacturing sectors.

C. Final Considerations for Industrial Feasibility

While our model consistently outperformed reference
and expected improvements, its applicability in real-world
industrial settings requires careful evaluation:

• Economic Feasibility and Cost Considerations:
- The implementation of advanced renewable energy
solutions, water treatment systems, and waste
reduction technologies comes with significant initial
investment costs.
- A detailed Return on Investment (ROI) analysis is
needed to determine long-term profitability.

• Operational Challenges and Scalability:
- Industrial adoption requires a scalable infrastructure
that ensures integration with existing manufacturing
systems without major disruptions.
- The effectiveness of these solutions depends on
industry-specific constraints, such as supply chain
stability and production capacity.

• Ideal vs. Real-World Conditions:
- The performance improvements were assessed
under controlled assumptions. However, real-world
conditions introduce variables such as:

– Unforeseen maintenance costs for renewable en-
ergy sources.

– Variability in raw material availability affecting
waste reduction efficiency.

– External regulatory and environmental policy
shifts impacting long-term adoption.

D. Conclusion

This study successfully demonstrated that leveraging
Petri Nets for Green Manufacturing can lead to significant
sustainability improvements, surpassing industry expecta-
tions. While the proposed model shows strong technical
potential, its real-world implementation must account for
cost, operational, and scalability challenges. Future re-
search should focus on:

• Comprehensive cost analysis to validate economic
feasibility.

• Scalability studies across different industrial sectors.
• Pilot programs in real-world manufacturing environ-

ments to assess effectiveness under dynamic conditions.

By addressing these real-world constraints, industries
can successfully transition toward sustainable manufactur-
ing while ensuring long-term viability.

REFERENCES

[1] B. M. Beamon, “Designing the green supply chain,” Logist. Inf.
Manag., vol. 12, no. 4, pp. 332–342, 1999.

[2] C.G. Cassandras and S. Lafortune, ”Introduction to Discrete Event
Systems,” 3rd Edition, Springer Verlag, 2021.

[3] J. Ding, X. Chen, H. Sun, W. Yan, and H. Fang, “Hierarchical structure
of a green supply chain,” Comput. Ind. Eng., vol. 157, p. 107303, 2021.

[4] S. K. Srivastava, “Green supply-chain management: A state-of-the-art
literature review,” Int. J. Manag. Rev., vol. 9, no. 1, pp. 53–80, Mar.
2007.

[5] I. D. Paul, G. P. Bhole, and J. R. Chaudhari, “A review on green man-
ufacturing: it’s important, methodology and its application,” Procedia
Mater. Sci., vol. 6, pp. 1644–1649, 2014.

[6] S. R. Pires and M. Sacomano Neto, “New configurations in supply
chains: the case of a condominium in Brazil’s automotive industry,”
Supply Chain Manag. Int. J., vol. 13, no. 4, pp. 328–334, 2008.

[7] D. R. Kaiyandra, F. Farizal, and N. Rakoto, “Petri Nets Application for
Supply Chain Management: A Review of Recent Literature,” in 2023
9th International Conference on Control, Decision and Information
Technologies (CoDIT), IEEE, 2023, pp. 1391–1396.

[8] D. R. Kaiyandra, F. Farizal, and N. Rakoto, “Colored Petri Nets for
Modeling and Simulation of a Green Supply Chain System,” IFAC-
PapersOnline, vol. 58, no. 1, pp. 306–311, 2024.

[9] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[10] A. J. Oumer, J. K. Cheng, and R. M. Tahar, “Green manufacturing
and logistics in automotive industry: A simulation model,” in 2015
9th International Conference on IT in Asia (CITA), IEEE, 2015, pp.
1–6.

[11] R. G. Rice, “Applications of ozone for industrial wastewater treatment
— A review,” Ozone Sci. Eng., vol. 18, no. 6, pp. 477–515, Jan. 1996.

[12] J. Perkowski, L. Kos, and S. Ledakowicz, “Application of Ozone in
Textile Wastewater Treatment, ” Ozone Sci. Eng., vol. 18, no. 1, pp.
73–85, Jan. 1996.

Modeling and distributed formal approach of

supply chain reconfiguration using multi-clock

timed automata with guards

Jihene Rajah1* and Said Amari1,2
1 LCFC, ENSAM, Paris, France

2 LIPN, Université Sorbonne Paris-Nord, France
Jihan.rajeh@ensam.eu, said.amari@ens-paris-saclay.fr

Abstract

This paper presents a distributed approach for supply chain reconfiguration using

timed automata with guards and dioid algebra. Timed automata capture the temporal

behavior of components with precise constraints, while guards define conditions for state

transitions. Dioid algebra allows analysis of distributed systems to determine optimal

reconfigurations under disruptions. The distributed nature enables components to adapt

autonomously, improving scalability, resilience, and reducing the need for central

coordination

1 Introduction

Strategic supply chain (SC) planning requires accurate modeling to address complexity, distribution,

and uncertainties. Traditional approaches, often centralized and based on Petri nets (PNs) or their

variants, have limitations in handling time and uncertainty. Timed Automata with Guards (TAG) offer

a time-aware alternative (Ait-Oumeziane et al., 2020), while distributed and autonomous methods using

multi-agent systems or reinforcement learning have recently emerged (Bermúdez et al., 2023). This

paper extends these approaches by combining multi-clock TAGs and dioid algebra (Max-Plus/Min-

Plus) to explicitly model bounded uncertainty, distributed coordination, and performance constraints

(Kaiyandra et al., 2024). Unlike most existing models, this hybrid framework ensures timing accuracy,

local autonomy, and global robustness, enabling resilient and scalable SC reconfiguration (Welikala et

al., 2025). The methodology includes performance evaluation, optimal scenario selection under

disruptions, and decentralized reconfiguration.

* Masterminded EasyChair and created the first stable version of this document

2 Synthesis of Distributed Reconfiguration Methods

 The supply chain reconfiguration procedure in response to disruptions is shown in Fig. 1 to

demonstrate the general disruption detection, modeling, and reconfiguration process. From identifying

disruptions to optimizing the reconfigured system, this flowchart delineates the essential steps involved.

Computational difficulties are introduced at each stage, adding to the total complexity.

3 Conclusion and Perspectives

This approach uses multi-clock timed automata with guards and dioid algebra to model and evaluate

supply chain temporal performance. It enables decentralized reconfiguration under disruptions by

composing local and global models and selecting optimal actions. The method enhances flexibility and

resilience and opens perspectives for learning, probabilistic modeling, and large-scale optimization.

References

Ait-Oumeziane, F., Kara, K., Amari, S. (2020). Formal analysis and control of timed automata with

guards using (max, +) and (min, +) algebras. International Journal of Systems Science, vol. 51, no.11

(pp. 2041-2056).

Bermúdez, JS., del Río Chanona, A., Tsay, C. (2023). Distributional Constrained Reinforcement

Learning for Supply Chain Optimization. Mathematics, vol. 11, no. 18 (p. 4016).

Kaiyandra, DR., Farizal, F., Rakoto, N. (2024). Colored Petri Nets for Modeling and Simulation of

Green Supply Chain System. IFAC WODES.

Welikala, S., Lin, H., Antsaklis, PJ. (2025). Inventory Consensus Control in Supply Chain Networks

using Dissipativity-Based Control and Topology Co-Design. IEEE Transactions on Systems, Man, and

Cybernetics: Systems.

Figure 1: Supply chain reconfiguration process in response to disruptions

Comparing Modelling and Simulation Tools in Order to
Face a Manufacturing-System Contest

Abir Ben Bouzaiene1,2, Olivier Boutin1,3, and Pascal André1

1 LS2N – UMR6004, Nantes Université, École Centrale Nantes, CNRS, F-44300 Nantes, France
pascal.andre@ls2n.fr and olivier.boutin@ls2n.fr

2 Polytech Intl, Rue du Lac d’Annecy, Les Berges du Lac 1053, Tunis, Tunisia
a.benbouzaiene22196@pi.tn

3 3iL Ingénieurs, 43 rue de Sainte-Anne, 87015 Limoges, France

1 Introduction
Modern systems require effective modelling and simulation techniques for accurate analysis and
informed decision making. Various approaches exist in order to tackle discrete event systems
such as (i) formal methods e.g. automata or Petri Nets (PNs), which provide a formal
graphical modelling approach [GK21] with formal proof of properties, (ii) numerical approaches
e.g. the dioid algebraic framework [BRHB13] for analytical computations and performance
evaluation (iii) and Discrete-Event Systems (DESs) simulation, to represent and simulate
system behaviours over time [BW10] and enable to compute samples properties. While they
all serve to model and analyse systems, they differ in the modelling process, abstraction level
and output focus, making it difficult to determine which approach is the most suitable for the
given requirements. This study compares their strengths and limitations using the Flexibac
system of the contest called IMIC [KHBDC24] as our study case. Choosing a benchmark
case is beneficial for comparing with others. This poster summary focuses specifically on the
comparative insights derived from that experimental framework.

2 Objectives and Methodology
The objectives of this study are to compare Petri nets, dioids and DES simulation in terms of
modelling process, expressivity, flexibility and verification capability, and to determine which
is the most appropriate depending on the system goal. For the case study, we mainly compare
PNs with DES because the dioid approach only covers a smaller perimeter so far. The Petri net
model was developed using CPN Tools and Romeo while the DES model was implemented
in FlexSim through three strategies: (i) an embedded logic coded directly in the model, (ii) a
data-driven approach controlled by external data files, and (iii) a socket communication [Gee25]
to exchange information with external applications in a client/server fashion[LMP+22].

3 Comparative Analysis & Findings
All the models were developed for the same case study under identical system parameters. The
comparison focuses on three main criteria: the modelling effort, which reflects the complexity
and time required to build each model; the capability for formal verification, indicating how well
each approach supports model validation and error detection; and model flexibility, representing
the ease of adapting the model to new or changing scenarios. The poster that illustrates this
study shows the experimentation methodology, details and results we obtain empirically.

Evaluating PNs and DESs Simulation Approaches Ben Bouzaiene and Boutin and André

Our findings reveal that, while both approaches yield valuable insights, they provide distinct
perspectives on system modelling and analysis. Petri nets provide a formal and mathematical
representation that model verification, identification of deadlocks and logical consistency check-
ing. In contrast, DESs simulation focuses on reproducing the dynamic behaviour of systems
over time, offering greater flexibility for testing operational scenarios. Among the three DES
strategies explored the socket-based communication proved to be the most adaptable, though
it required the highest implementation effort.

4 Conclusion & Perspectives
The choice between PNs and DESs simulation depends on the objectives. When the goal is
to ensure formal validation and correctness, PNs are more appropriate. When the focus is
on the experimentation, performance analysis and integration with external data or systems,
DESs simulation is preferable. A promising perspective is the development of a hybrid modelling
framework that combines the verification power of PNs with the dynamic simulation capabilities
of DESs simulation, enabling a comprehensive approach to system analysis and decision support.

This empirical study is not a definitive demonstration but the starting point for further
investigations. We need to get deeper into the verification process. As a benchmark, the IMIC
contest is assumed to bring researchers compare their tool and practices and we surely want to
not only compare our results but also to investigate other approaches and tools. Also, other
case studies are mandatory to improve the confidence we have on our current findings.

Another perspective is to define how to take into account decision points of a system with
more precision thanks to switches in a dioid framework [ASZ+22] and to embed the former into
the socket-based approach we could set up thanks to the PyMinMaxGD library [BM25].

References
[ASZ+22] D. Animobono, D. Scaradozzi, E. Zattoni, A.M. Perdon, and G. Conte. The Model

Matching Problem for Switching Max-Plus Systems: a Geometric Approach. IFAC-
PapersOnLine, 55(40):7 – 12, 2022. IFAC COSY 2022.

[BM25] Olivier Boutin and Claude Martinez. PyMinMaxGD. gitlab.univ-nantes.fr/dioids/
python-toolbox, August 2025. Accessed: 18 September 2025.

[BRHB13] Thomas Brunsch, Jörg Raisch, Laurent Hardouin, and Olivier Boutin. Discrete-Event
Systems in a Dioid Framework: Modeling and Analysis. In Carla Seatzu, Manuel Silva,
and Jan H. van Schuppen, editors, Control of Discrete-Event Systems: Automata and
Petri Net Perspectives, pages 431–450. Springer, London, 2013.

[BW10] Eduard Babulak and Ming Wang. Discrete event simulation. Aitor Goti (Hg.): Discrete
Event Simulations. Rijeka, Kroatien: Sciyo, page 1, 2010.

[Gee25] GeeksforGeeks. Socket in Computer Network, 2025. Accessed: 4 October 2025.
[GK21] Iwona Grobelna and Andrei Karatkevich. Challenges in Application of Petri Nets in

Manufacturing Systems. Electronics, 10(18), 2021.
[KHBDC24] Nathalie Klement, Hichem Haddou Benderbal, William Derigent, and Olivier Cardin.

IMIC: Intelligent Manufacturing International Contest - towards the gradual design of a
new benchmark. In SOHOMA 2024, Augsburg, Germany, September 2024.

[LMP+22] Jonas F. Leon, Paolo Marone, Mohammad Peyman, Yuda Li, Laura Calvet, Mohammad
Dehghanimohammadabadi, and Angel A. Juan. A Tutorial on Combining Flexsim with
Python for Developing Discrete-Event simheuristics. In 2022 Winter Simulation Confer-
ence (WSC), pages 1386 – 1400. IEEE, 2022.

2

gitlab.univ-nantes.fr/dioids/python-toolbox
gitlab.univ-nantes.fr/dioids/python-toolbox

Génération de Code PLC Pilotée par le MBSE et Validation de Scénarios de Test
Augmentée par l’IA

Bruck Metekia1, Laurent Pietrac2, Khalid Kouiss3

1SIGMA Clermont / CTBE, Université Clermont Auvergne / AAU, Clermont-Ferrand, France
bruck.alemu.metekia@sigma-clermont.fr

2SIGMA Clermont, Université Clermont Auvergne, Clermont-Ferrand, France
Laurent.Pietrac@sigma-clermont.fr

3SIGMA Clermont, Université Clermont Auvergne, Clermont-Ferrand, France

khalid.kouiss@sigma-clermont.fr

1. Problème et Motivation

Contexte: Le retard dans la vérification et la validation des programmes API peut être résolu par la mise en service
virtuelle (VC) soutenue par l’ingénierie système basée sur les modèles (MBSE) et des outils comme Capella [1,2]. Dans la
vérification et la validation des programmes API, l’une des tâches les plus ardues est la génération de scénarios et de cas de
test, et récemment, les grands modèles de langage (LLMs) se sont avérés être une alternative prometteuse ; cependant, les
LLMs nécessitent souvent une vérification manuelle et sont limités par l’analyse statique [3].
Objectif: IÉtudie l’utilisation des grands modèles de langage (LLMs) pour générer des suites de tests basées sur des
scénarios pour les programmes API, avec pour objectif plus large de construire un framework modulaire de mise en service
virtuelle de bout en bout intégrant l’ingénierie système basée sur les modèles (MBSE).

Initial Approch: Factory IO Model → Manual ST code → Generate scenarios with LLMs → Virtual validation →
Log results
Les LLMs (ChatGPT et DeepSeek) peuvent générer des suites de tests basées sur des scénarios, mais présentent
certaines limites (absence de préconditions clairement définies et inférences incorrectes à partir du code ST), ce qui
met en évidence la nécessité d’une meilleure approche pour améliorer le contexte système.

2. Approche MBSE avec Capella

Source de Vérité: Le modèle Capella fournit des spécifications système structurées et non-ambiguës pour l’automatisation.

=

Figure 1: Modèles Capella Figure 2: Framework étendu du modèle Capella
à la génération et validation de suites de tests

L’utilisation de Capella permet:

• un modèle système formel et traçable
• et guide les LLMs dans la génération de suites de tests précises et liées aux exigences

3. Résultats et Discussion

Figure 3: Code Structured Text (ST) généré par ChatGPT

Exigences fonctionnelles générées par ChatGPT
(GPT-4o)

"ID": "FR-01",
"Description": "Le convoyeur dmarre lorsque le bouton Start est

press et que les boutons d’urgence/arrt ne sont pas actifs
.",

"Preconditions": "Arret_urgence = TRUE, Bouton_arret = TRUE,
Reset_factory_io = FALSE",

"Trigger": "Bouton_start = TRUE",
"ExpectedResult": "Moteur_convoyeur1 = TRUE, Moteur_convoyeur2 =

TRUE"

Résultats Clés:

• Code ST généré de meilleure qualité
• LLMs performant mieux avec MBSE
• 80% taux de réussite initial

Discussion: Les données du modèle Capella et les fichiers
d’exemple de l’approche initiale ont éliminé le besoin de
requêtes supplémentaires et ont amélioré les performances
des modèles de langage (LLM).de tests.

Suites de tests basées sur des scénarios générées à
partir des exigences fonctionnelles

"ID": "S1",
"Titre": "Dmarrer les convoyeurs",
"Auteur": "Bruck Alemu",
"Acteur": "API + Factory I/O",
"Rle": "Valider l’exigence",
"Objectifs": "Dmarrer les convoyeurs",
"ExigenceLie": "FR-01",
"Prconditions": "Arret_urgence = TRUE, Bouton_arret = TRUE,

UrgenceActive = FALSE, Bouton_start = TRUE",
"Postconditions": "Moteur_convoyeur1 = TRUE,

Moteur_convoyeur2 = TRUE",
"Description": "Scnario de test pour le dmarrage des

convoyeurs.",
"CasDeTest": {

"IDCasDeTest": "TC1",
"TypeDeCondition": "Normale",
"Entre": "Bouton_start = TRUE",
"SortieAttendue": "Moteur_convoyeur1 = TRUE,

Moteur_convoyeur2 = TRUE"
},
"TempsDeSimulation": "3s"

Résultats
Tests
ID Titre Résultat

S1 Démarrer con-
voyeurs

Pass

S2 Arrêter con-
voyeurs

Pass

S3 Activer émetteur Pass

S4 Arrêt d’urgence Pass

S5 Réinit. urgence Pass

S6 Réinit. Factory
IO

Échec

S7 Déclencher
alarme

Pass

S8 Effacer alarme Pass

S9 Compter palettes Échec

S10 Arrêt après 4 Pass

Table 1: Résultats de tests automatisés issus de suites de
tests basées sur des scénarios

4. Conclusion et Perspectives

Conclusion:

• Le framework proposé intègre le MBSE, le rendant à la
fois plus flexible, évolutif et traçable, tout en fournissant
davantage de données d’entrâınement aux LLMs sur le
système.

• De plus, le code ST généré automatiquement s’est révélé
de meilleure qualité ; ainsi, en plus de faire gagner du
temps, cette approche pourrait contribuer à combler le
manque en cas d’absence d’un expert.

Perspectives:

• Valider les capacités du système avec un système plus
complexexe

• Implémenter en utilisant différents critères de couver-
turede test

Remerciements: DocCe travail est réalisé dans le cadre
d’un doctorat conjoint, Projet Éthiopie 4.0 , entre
l’Université Clermont Auvergne et l’Université d’Addis-
Abeba, financé par l’Agence Française de Développement
(AFD), France.ance.

Références

1. M. Schamp et al., ”Impact of a virtual twin on commissioning
time and quality.” IFAC-PapersOnLine, vol. 51, no. 11, pp.
1047-1052, 2018.

2. C. Duhli et al., ”Chaining model transformations for system
model verification application to verify capella with simulink,”
in 8th International Conference on Model-Driven Engineering
and Software Development, 2020, pp. 279-286.

3. H. Koziolek et al., ”Automated control logic test case generation
using large language models,” in 2024 IEEE 29th International
Conference on Emerging Technologies and Factory Automation
(ETFA), 2024, pp. 1-8.

Weighted ω-automata with bounds
Ugo Thay1, Philipp Schlehuber-Caissier2, and Sven Dziadek2

1ENSIIE, Évry
{surname}.{name}@ensiie.eu

2Télécom SudParis, Évry
{surname}.{name}@telecom-sudparis.eu

Guillaume Burel3

3ENSIIE, Évry (internship tutor)
{surname}.{name}@ensiie.fr

Third year (Masters) internship
March 20, 2025 —September 19, 2025

Acknowledgements

First and foremost, I would like to thank Philipp Schlehuber-Caissier and Sven Dziadek
for accepting to be my supervisor for these six months at Télécom SudParis, accompanying me
through this internship, pointing out possible improvements in our implementations and helping
me proofread this document.

Many thanks also to François Tessier, from the KERDATA team at Inria Rennes, who was
also my internship supervisor during my time at KERDATA and without whom I would have
probably not developed a strong interest in research.

I would also like to thank all the people I met at Télécom SudParis, Télécom Paris and during
my brief visit at ENS Saclay, especially Dimitri, Zineddine, Montassar, Aoki, and all the people
at the RST department at Télécom SudParis for the good times during lunch and coffee breaks,
and Krzysztof Ziemański for his interesting (post-internship. . .) talk on presheaf automata and
the discussions we had at ENS Saclay.

Last but not least, I want to thank my family for supporting me throughout this internship in
every way they could.

Abstract

We implement existing algorithms from the literature to solve parity energy problems in
weighted Büchi automata, and propose dedicated ones based on these algorithms to solve more
efficiently specific types of ω-energy problems, such as in automata with Rabin or co-Büchi ac-
ceptance conditions. As a means to solve co-Büchi ω-energy problems, we also elaborate on the
notion of energy functions, prove that it is possible to use the Floyd-Warshall algorithm on
automata weighted with such functions to attain similar results as algorithms derived from the lit-
erature, and compare the performance of this algorithm with these other co-Büchi problem solvers.

Keywords: weighted automata, Büchi automata, ω-energy problems, energy functions, Floyd-
Warshall algorithm

Contents

1 Introduction 3

2 Solving for Büchi, parity and others 7
2.1 Büchi automata and parity energy problems . 7
2.2 Rabin condition . 10
2.3 ⊤ condition (monitor) . 12

3 Co-Büchi ω-automata 12
3.1 A first algorithm . 12
3.2 Refinements towards an optimized algorithm . 13
3.3 Energy functions . 18

4 Application of energy functions to energy problems 31
4.1 Mutators . 31
4.2 Floyd-Warshall algorithm with energy functions 36

5 Implementation of energy functions 37
5.1 Structure . 37
5.2 Performance and optimization . 41

6 Perspectives 46
6.1 Towards a generalization of mutEF (WU)? . 47

Appendices 50
A About Télécom SudParis . 50
B Sustainable and Socially Responsible Development (DD&RS) 50

B.1 Green Transition and Social Transition Master Plan 50
B.2 A heavy reliance on AI technologies . 50

List of Figures

1 State machine of a washing machine. 3
2 An acceptor on Σ = {a, b} that accepts words starting with an a and ending with a

b, i.e. the language aΣ∗b. 3
3 A weighted automaton that recognizes some city names equipped with probabilistic

weights. For example, the word “Paris” has a higher weight than the word “Torcy”.
Labels have been condensed for readability (the label “oissy” would need to be
separated into the letters “o”, “i”, “s”, “s”, “y”). 4

4 A Büchi automaton on Σ = {a, b} that accepts infinite words that do not contain
the letter b, i.e. the language aω. 5

5 An automaton accepting words that contain infinitely often the letter a with even-
tually some b between instances of a, i.e. the language (b∗a)ω). 5

6 A generalized Büchi automaton accepting words that contain an infinite amount of
a and b, i.e. the language b∗(a+b+)ω). 5

7 On first iteration, the energy attained after traversing the (1,2,3) loop will be lower
than when entering for the first time state 1 (from 0 with 10 energy) despite it being
a non-negative loop. 15

8 An automaton with one energy-feasible loop and several energy-negative loops. This
example is inspired from Figure 6 in [8]. 15

1

9 The loop (1, 2)ω, is only accessible if the initial energy is between 5 and 10 because
of the transition going from 0 to 1. 18

10 Due to the WU = 10 constraint, the transition going from 3 to 0 is unusable. . . . 19
11 An automaton with two different positive loops. 19
12 Examples of energy segments. 20
13 Ftest, a fully defined energy function. 21
14 ⊕ operation on two non-intersecting energy segments. 25
15 ⊕ on energy segments is commutative. 25
16 ⊕ operation on two intersecting energy segments. 25
17 × operation on an energy segment and an energy function. 26
18 Equivalent energy function for a transition going from 1 to 2 with weight -3. 33
19 Equivalent energy function for a transition going from 4 to 1 with weight 6. 33
20 Energy function associated with transitions from 1 to 3. 34
21 Energy function associated with transitions from 1 to 4. 34
22 An automaton with an energy-neutral loop symbolized by an energy point in the

energy function associated with the optimal energy path from 1 to 1. Here, WU = 10. 35
23 General form of the nested loops automaton with n loops. 41
24 Automaton with five nested loops. 42
25 General form of the “stairs” automaton with n loops. 42
26 “Stairs” automaton with three loops. 43
27 Execution times for various co-Büchi solving techniques in (top to bottom, left to

right): the nested loops automaton, the non-feasible nested loops automaton, the
“stairs” automaton and the circling automaton. 44

28 Graphical representation of the cProfile profiler run on the Floyd-Warshall
based co-Büchi solver on the nested loops automaton with 11 loops. 45

29 Our modified Floyd-Warshall algorithm applied to a Büchi automaton. The
energy function from 2 to itself is depicted. 46

30 The Büchi accepting loop of this automaton is not accessible due to the transition
between 0 and 1. 47

31 An energy function that cannot be interpreted as a single integer-weighted transition. 47

List of Algorithms

1 Büchi accepting lassos search in WBAs . 8
2 Modified Bellman-Ford algorithm . 8
3 Optimal energy prefixes calculation . 9
4 Algorithm for solving parity energy problems . 11
5 Solving for Rabin . 11
6 “Naive” solving for co-Büchi . 12
7 Co-Büchi solving using cycle storage . 14
8 Co-Büchi solving using backtracking . 17
9 Standard Floyd-Warshall algorithm . 18
10 Cleaning algorithm . 29
11 Floyd-Warshall algorithm for arbitrary semirings 36
12 Additive operation (⊕) on energy functions . 40
13 Multiplicative operation (⊗) on two energy functions 40

2

1 ▷ Introduction

Finite-state machines or automata are elementary structures of automata theory which consist
of a finite number of states, including one initial state, and transitions between states equipped
with a criterion that must be fulfilled to use them.

idle

wash

rinse

spin

pause

pause

pause

wash started

cycle finished

pause

pause

pause

unpause

unpause

unpause

Figure 1: State machine of a washing machine.

Figure 1 illustrates an example of a (simple) state machine.
An acceptor, such as the one presented in Figure 2, is a type of finite-state machine that returns

a boolean output depending on its input, which is a finite word ω ∈ Σ∗ on an alphabet Σ (we say
the word is accepted or rejected). As such, transitions in this kind of automaton are often labeled
with letters of Σ. A common application of such automata is in formal language theory, where a
language (a set of words) is regular (expressible by a regular expression) iff there exists an acceptor
that recognizes exactly that language (i.e. there exists an automaton that accepts exactly all the
words of the language).

s0 s1 s2
a

a, b

b

Figure 2: An acceptor on Σ = {a, b} that accepts words starting with an a and ending with a b,
i.e. the language aΣ∗b.

States in an acceptor automaton are divided into accepting and non-accepting states, which
determine at the end of the execution, or run (the consumption of a word’s letters and the use
of the automaton’s transitions according to these letters), if a word is accepted or not. In the
following, we only focus on acceptor automata.

3

Some problems where we want to attribute some cost or weight to transitions cannot be
represented by finite-state machines. Weighted automata aim to solve this issue by complementing
transitions (that already have letters from Σ equipped to them, without which the automaton
becomes a weighted directed graph) with weights valuated on a semiring.

A semiring (also sometimes called rig) is defined as a ring-like structure, that is a set R with
the usual properties of a ring:

• R is equipped with an additive operation ⊕ and a multiplicative operation ⊗;

• (R,⊕) is a commutative monoid;

• (R,⊗) is a monoid;

• ⊗ is distributive to the left and to the right over ⊕;

but where some elements of R may not have an inverse for the additive operation.

Weighted automata are commonly used in domains where probabilistic approaches are needed,
such as language models and speech recognition in [12]. Figure 3 represents an example of a pos-
sible application of weighted automata.

0 20 21

10 12

11

14

13

30 31

32

P/0.7

C/0.2

T/0.1

oissy/0.1

a/0.9

laiseau/0.1

ris/0.9

ergy/1

orcy/0.6

rappes/0.4

Figure 3: A weighted automaton that recognizes some city names equipped with probabilistic
weights. For example, the word “Paris” has a higher weight than the word “Torcy”. Labels have
been condensed for readability (the label “oissy” would need to be separated into the letters “o”,
“i”, “s”, “s”, “y”).

Finite-state acceptors may also only take finite words (elements of Σ∗) as input: they cannot
be used to model problems that do not halt, such as operating systems. ω-automata are a solution
to this problem, by letting standard finite-state automata accept infinite words, or elements of Σω

(thus the name of this type of automaton) as input. Since a run in such automata is now infinite,
there is no notion of final state or state at the end of the execution; as such, new conditions for
accepting words must be defined.

In 1962, Büchi, in [20], is the first to develop a type of ω-automaton called Büchi automata,
which are composed of the usual elements of a finite-state machine (set of states, alphabet, set of

4

transitions, initial state) as well as a set of accepting states. A run is considered accepting if there
is at least one accepting state occuring infinitely often in it. An example of such an automaton is
illustrated in Figure 4.

0 1

a
b

b

a

Figure 4: A Büchi automaton on Σ = {a, b} that accepts infinite words that do not contain the
letter b, i.e. the language aω.

Such Büchi automata are also called state-based Büchi automata, since they rely on accepting
states to determine if a run is accepting or not. Transition-based Büchi automata are another
type of Büchi automata in which the set of accepting states is replaced with a set of accepting
transitions, with a similar criterion for determining accepting runs. There exists a bijection between
state-based and transition-based Büchi automata according to [7]. An example of transition-based
Büchi automaton is provided in Figure 5.

ω-automata are not limited to Büchi automata: other acceptance conditions have been pro-
posed, such as the Muller condition in [14] where the set of accepting states is replaced with a set
F of sets of states, i.e. a run is accepting if the set of all states that occur infinitely often is an
element of F ; or the generalized Büchi condition, such as in Figure 6, where there exist n sets of
accepting states {Fi}1≤i≤n, i.e. a run is accepting if, for each i ∈ [1, n], there exists a state si ∈ Fi

so that si occurs infinitely often in the run. Such sets of accepting states are also called acceptance
sets or colors and are usually numbered using positive non-zero integers.

The parity condition, introduced in [13], is another type of acceptance condition equippable
to a WWA, where the acceptability of a run depends on the highest or lowest color that appears
infinitely often during the run (in parity conditions, colors are sometimes called priorities). The
case where a run is considered accepting if the highest priority is even is called the max-even case,
similar cases exist when the appropriate priority must be odd, or when we consider the lowest pri-
ority instead (min-even, min-odd). More generally, an ω-automaton with an arbitrary acceptance
condition is also called an Emerson-Lei automaton, as introduced in [1].

0

a•

b

Figure 5: An automaton accepting words that contain infinitely often the letter a with eventually
some b between instances of a, i.e. the language (b∗a)ω).

0

a•

b•

Figure 6: A generalized Büchi automaton accepting words that contain an infinite amount of a
and b, i.e. the language b∗(a+b+)ω).

An interesting extension of these two types of automaton (weighted and ω) is that they can be
combined to form weighted ω-automata, or WWA. A particular case of WWA is when the initial

5

non-weighted automaton has a Büchi condition, yielding a weighted Büchi automaton (WBA).

First introduced in [5] on classic weighted automata (without acceptance conditions), energy
problems on WWAs consist in determining if there exists a run in an transition-based WWA that
respects the WWA’s acceptance condition but also an additional quantitative condition.

This quantitative condition often depends on a fixed quantity, called upper bound, that is
analogous to the maximum capacity of a battery or industrial tank. It also depends on a lower
bound (usually 0). Thus, the quantitative condition in an energy problem is that at any moment
during the run, the accumulated energy (which varies during the run depending on the transitions
taken) must remain within these two bounds. This allows us to model problems where a certain
quantity has lower and upper bounds, such as autonomous systems with a limited energy supply or
more abstract systems that require the use of a bounded accumulator. However, in such problems,
the semiring property of weights is lost.

In [4], energy problems are divided into three types:

• the lower-bound case: there is no upper bound, the accumulated energy can be as high as we
want. This case can model systems where the energy supply is large enough to be considered
infinite, such as dams;

• the lower-upper-bound (or upper-bound) case: it is not possible to use transitions that would
result in an energy superior to the upper bound. This case can be used to model systems
where there exist physical restrictions on the energy supply, for example industrial tanks
with a limited capacity and a continuous supply that may not spill out;

• the lower-weak-upper-bound (or weak-upper-bound) case: it is possible to use transitions
that would result in an energy superior to the upper bound, in which case the final energy
is capped to the upper bound (if the starting energy is a and the energy associated with
the transition to be used is b, then the resulting energy after using the transition will be
the minimum between the upper bound and a + b). This case is commonly used to model
batteries or systems that require electricity.

As a WWA remains an ω-automaton, it is still equipped with an acceptance condition, which
represents a qualitative condition in an energy problem. This qualitative condition does not de-
pend on the weight and instead keeps the properties from the unweighted ω-automaton it comes
from ((generalized) Büchi, Muller, etc.).

[8] presents algorithms for solving weak-upper-bound energy problems in WBAs, as well as in
WWAs equipped with a parity condition via a reduction to multiple Büchi energy problems. In a
first time, we implement the algorithm for solving parity energy problems in Python using (and
extending) the wspot library [16], a Python set of bindings for the C++ library Spot [21].

In a second time, we pick up the work presented in [8] and extend it to automata with other
acceptance conditions than Büchi and parity. While it has been proven in [19] that Emerson-Lei
automata can be translated to parity automata, this transformation (which is implemented in
Spot) does not preserve weights. As such, one of the main problems we try to address here is the
existence of efficient algorithms for solving energy problems on co-Büchi automata.

In the following, we use the conventions adopted in [8] regarding :

• the alphabet Σ is supposed already defined and finite in all definitions;

• automata are also considered finite (i.e. have a finite number of states);

• a weighted Büchi automaton (WBA) A = (M, S, s0, T) is composed of a finite set of integer-
labeled colorsM, a set of integer-labeled states S with s0 ∈ S being the initial states, and a
set of transitions T ⊆ S × 2M × Z× S;

6

• an acceptance condition α, as defined in [3], is a boolean formula following the grammar:

α ::= ⊥ | ⊤ | Inf(col) | Fin(col) | α ∧ α | α ∨ α | (α)

where⊥ and⊤ represent the usual associated booleans, ∧ is the logical AND, ∨ is the logical OR,
and col ∈M is a color. The acceptance condition Inf(col) can be interpreted as “an accepting
run sees an infinite number of times the color col”, while as Fin(col) can be interpreted as
“an accepting run sees a finite number of times the color col”;

• a weighted ω-automaton (WWA) A = (M, S, s0, T, α) is a WBA equipped with an acceptance
formula α, where the grammar of acceptance formulas is defined in [3] (a WBA can also be
considered as a WWA with α = Inf(0));

• as M = {mi}1≤i≤n is a set of integers, where n = |M|, it is possible to reindex the mi so
that they are numbered from 0 to n− 1;

• a transition t = (s,M,w, s′) ∈ T in A going from s to s′ is annotated by a set of colors
M ⊆M and a weight w ∈ Z.

We also consider c ∈ N the initial credit or initial energy, which is the accumulated energy from
the initial state; as well as b ∈ N the upper bound. In the following, we use WU to designate the
upper bound.

In a first time, we consider classic energy problems in integer-weighted WWAs, then we later
extend the definition of a WWA to a new structure inspired of the results of [4] called energy
functions, which can be assimilated to functions that associate an input energy (when entering
a transition or group or transitions) to an output energy (when leaving a transition or group of
transitions).

2 ▷ Solving for Büchi, parity and others

In this section, we recall known algorithms to solve energy problems in Büchi automata as well
as parity ones, and build new algorithms derived from Büchi and parity solvers to solve energy
problems in other types of WWAs.

2.1 ▷ Büchi automata and parity energy problems
Continuing the work already done in [8], we work on automata respecting the Hanoi-Omega

Automaton format defined in [3] augmented to support weights on transitions. The version of Spot
supporting weights can be found on the sven/weighted branch at [21].

The Python code for our implementation of the algorithms in [8] can be found on GitHub
at https://github.com/PhilippSchlehuberCaissier/wspot/tree/thay, in the WBA_solvers
module.

We recall the already implemented algorithm for solving ω-energy problems in weighted Büchi
automata, presented in Algorithm 1, and the algorithm that already appeared informally in [8]
which allows solving parity problems in WWAs which will be presented in Algorithm 4.

It is demonstrated in [8] that any accepting path in A is of the form γ1γ
ω
2 , called lasso, where

γ1 is a path (a sequence of transitions) that designates the finite prefix of the lasso which is only
traversed once, and γ2 is a path that designates the cycle of the lasso which is repeated an infinite
number of times.

In a WBA, the acceptance condition α = Inf(0) may be interpreted as “use an infinite number
of times transitions that are equipped with the color 0”. It follows that the cycle part of an ac-
cepting run must contain at least one transition that is equipped with the color 0 for it to satisfy
this qualitative condition.

7

https://github.com/PhilippSchlehuberCaissier/wspot/tree/thay

Algorithm 1: Büchi accepting lassos search in WBAs
Data: a WBA A = (M, S, s0, T), an initial credit c, a WU
Result: ⊤ if there is a Büchi accepting loop in A, ⊥ else

1 E ←− optimal energy prefixes in A from its initial state
2 SCCs ←− list of SCCs in A
3 for scc ∈ SCCs do
4 GS, back-edges ←− degeneralize(scc)
5 for be = src → dst with weight w ∈ back-edges do
6 E′ ←− optimal energy prefixes in GS from dst with initial energy E at dst
7 e′ ←− min(b, E′[src] + w)
8 if E[dst] ≤ e′ then
9 return ⊤

10 else
11 E′′ ←− optimal energy prefixes in GS from dst
12 e′′ ←− min(b, E′′[src] + w)
13 if e′ ≤ e′′ then
14 return ⊤
15 else
16 for sM where E′′[sM] = WU do
17 E→ ←− optimal energy prefixes in GS from sM
18 edst ←− min(b, E→[src] +w
19 E← ←− optimal energy prefixes in GS from dst
20 if E←[sM] = b then
21 return ⊤

22 return ⊥

Algorithm 2: Modified Bellman-Ford algorithm
Data: a WBA A = (M, S, s0, T) with n states, an initial credit c, a WU , an array E of

size n
Result: an array with n elements with the optimal energy for each state, an array with n

lists of optimal predecessors for each state
1 Pred ←− empty array of size n filled with []
2 for s ∈ states of A do
3 for t from s to s′ with weight w ∈ transitions of A do
4 e′ ←− min(E[s]) + w,WU)
5 if e′ ≥ 0 and E[s′] <e′ then
6 E[s′]←− e′
7 if s′ has less than 2 predecessors or t is not in the 2 last seen predecessors of s′

then
8 append t to P[s′]

Algorithm 3 calculates optimal energy paths for every state of A, that is paths that maximize
the final energy attained at that state (this is the γ1 part of an accepting lasso). In this algorithm,
a modified version of the standard Bellman-Ford algorithm on weighted graph structures, which
is traditionally used to calculate shortest paths from a single state to every state while supporting
negatively weighted cycles, is used while E has not reached a fixed point, i.e. while there exist

8

Algorithm 3: Optimal energy prefixes calculation
Data: a WBA A = (M, S, s0, T) with n states, an initial credit c, a WU
Result: an array with n elements with the optimal energy for each state, an array with n

lists of optimal predecessors for each state
1 E ←− empty array of size n filled with −∞
2 E[s0] ←− c
3 while no fixed point in E do
4 apply Algorithm 2 to A using the array E
5 pump all loops in A

6 return E

states which optimal energy can be improved.
The modified Bellman-Ford algorithm is recalled in Algorithm 2. It is an extension of this

classic algorithm, which stores in an array E the optimal energy attained for each state, as well as
the transitions that have been used to reach an energy optimal state at one point in an array of
transition lists called Pred (we have direct access to a predecessor given a transition) to be able to
later reconstitute the energy optimal prefix.

The loops pumping procedure, which will not be detailed here, consists of finding every state
that changed energy during the application of the modified Bellman-Ford algorithm. If such a
state s has a positive change, this could mean that a positive loop was used to increase its optimal
energy: it is then possible to use that positive loop again.

In that case, the single loop pumping procedure (which is not detailed here either) is used.
This procedure uses the Pred array that appears in the modified Bellman-Ford algorithm to
find states belonging to the loop that contains s, and maximises the optimal energy of all these
states.

The loops pumping procedure allows to reduce the number of Bellman-Ford iterations to
only one, which is useful if the number of times the loop must be taken is high (for example, if the
WU is high).

The procedure to find an accepting lasso in a WBAA is decomposed into two steps, as explained
in [8]:

• first, energy-optimal paths to each state are computed in A using Algorithm 3. These paths
give us the maximum energy attained when entering the automaton with an initial energy of
c. They will be the prefixes of potential accepting lassos;

• then, the algorithm searches for accepting cycles in each of the automaton’s strongly con-
nected components or SCCs. By definition of a SCC, that is a set of states where there exists
a path between every pair of states, it is not possible to find a cycle that spans over multiple
SCCs (if a state s is in a SCC, s′ is in another and there exists a cycle that spans over both
SCCs, it would mean there exists a path between s and s′ and vice versa by using that cycle,
which is absurd). This step uses a modified version of the Couvreur algorithm used to find
SCCs in a generic graph that is bundled with Spot and that preserves weights.

The search for accepting cycles in a SCC (which is itself a WBA as it is extracted from the
WBA A) is further divided in several parts;

• the SCC is degeneralized. This process, also explained in [8], transform a WBA with multiple
colors into an equivalent WBA with a single color (i.e. α = Inf(0) by using a layering method:
k = |M| copies of A, called levels and indexed from 1 to k, are created (as such, the resulting
automaton has O(k|S|) states). Each level i ∈ [1, k] contains the same transitions as A except
for the ones that are colored with the color i: these transitions do not lead to their original

9

destination state in the current level, but to the equivalent destination state in the level i+1
or 1 if i = k. Transitions that allow returning to the first level are called back-edges and are
the only ones colored in the new automaton with the color 0;

• since an accepting loop must contain at least one transition that accepts 0, we check for each
back-edge be going from src to dst if there exists an energy-accepting cycle that includes be.
To do so, the initial step of computing the energy-optimal paths from dst to each state is
repeated, but with an initial energy equal to the optimal energy at dst and with be as the
last used transition. This yields a final attained energy at dst, which is then compared with
the initial energy at dst:

– if the final energy is greater than the initial energy, this means that we did not lose
energy when traversing the cycle. This means we have found our lasso, by combining
this cycle with the energy-optimal path used to reach dst;

– if this is not the case, then this step is repeated but with an initial energy at dst equal to
the final energy reached prior to this comparison. This step must be repeated to account
for some cases where, for example, the final energy would be less than the initial one
due to the WU being reached early in the cycle.

In [8], an “onion” method that reuses the Büchi solving algorithm is used to find accepting paths
in WWAs equipped with a parity condition. In the following, we place ourselves in a max-even
parity problem.

We recall how the “onion” method works:

• we initially calculate the optimal energy prefixes just like in the Büchi case;

• for the same reasons as in WBAs, we only need to find accepting loops in the SCCs of A;

• if the resulting automaton (SCC) is empty then there are no accepting loops, else we examine
the parity of the highest priority:

– if it is odd, then we do not want it to appear in the final cycle, so we remove it entirely
from the automaton and re-run a parity solve on the resulting stripped automaton;

– if it is even, then we search if there exist accepting loops that include this color. To do so,
colors are removed from all transitions except for the highest one, reducing the problem
to a Büchi problem. We then return a positive result if there is indeed an accepting
loop in this new WBA or re-run a parity solve on the SCC without the highest priority
otherwise.

Algorithm 4 is a formalization of this parity solving algorithm.
We can also use the Büchi and parity solvers as basis for new algorithms that allow us to solve

energy problems in automata using other acceptance conditions.

2.2 ▷ Rabin condition
In an automaton equipped with a Rabin condition, an even number of colors is considered.

Colors are divided into (odd color, even color) color pairs: for an run to be accepting under this
condition, there must exist a color pair where the even color occurs finitely often and the odd color
occurs infinitely often. As such, a Rabin condition is of the form α =

∨k∈N∗

i=0 Fin(2i)∧ Inf(2i+1).
To solve an energy problem in a WWA A under a Rabin acceptance condition, we can try for

each pair of acceptance sets (2i, 2i+ 1) to strip A from transitions accepting 2i, and run a Büchi
solver on an automaton with the same states and transitions as A but with no colors except for
2i+ 1 (which is renumbered to 0 in the scope of the Büchi solver). We present in Algorithm 5 an
algorithm to solve such problems.

In the following, when we say we remove the color col from A, where col ∈ M is a color, this
means that we remove every transition that accepts col.

10

Algorithm 4: Algorithm for solving parity energy problems
Data: a parity automaton A
Result: ⊤ if there is an accepting loop in A, ⊥ else

1 E ←− optimal energy prefixes in A from its initial state
2 for scc ∈ SCCs in A do
3 if scc has no transitions then
4 return ⊥
5 if the highest priority is even then
6 A′ ←− scc with the acceptance condition set to Büchi
7 for transition ∈ A′ do
8 if transition accepts the highest priority then
9 set acceptance set to 0

10 else
11 remove all acceptance sets

12 res ←− Büchi solving on A′

13 if res then
14 return ⊤
15 else
16 return parity solving on scc

17 if highest priority is odd then
18 remove all transitions accepting the highest priority from scc
19 return parity solving on scc

Algorithm 5: Solving for Rabin
Data: a Rabin ω-automaton A = (M,S, s0, T) with |M | = 2p colors, an initial state s0, a

weak upper bound WU , an initial credit c
Result: a BuechiResult

1 begin
2 for k ∈ [0, p− 1] do
3 f ←− 2k
4 i←− 2k + 1
5 buchiHoa←− A with the color f removed
6 set buchiHoa acceptance to Büchi
7 for e ∈ buchiHoa edges do
8 if e accepts i then
9 e now accepts 0

10 else
11 e now accepts nothing

12 br ←− solve for Büchi in buchiHoa
13 if br then
14 return br

15 return no loop

11

2.3 ▷ ⊤ condition (monitor)
When α = ⊤, every infinite run that is accepting under the energy condition is also accepting

under the qualitative condition. We will see in Section 3 that we can use the same method as in
co-Büchi automata to solve energy problems in this kind of automaton.

3 ▷ Co-Büchi ω-automata

A co-Büchi ω-automaton is a WWA where α = Fin(0). A generalized co-Büchi ω-automaton
is a generalization of co-Büchi ω-automata to multiple acceptance sets, i.e. α =

∨k∈N∗

i=1 Fin(k).
Note that a co-Büchi automaton is also a generalized co-Büchi automaton (k = 1).

We can interpret the co-Büchi acceptance condition as “there exists an energy-feasible run that
doesn’t traverse an infinite amount of times a transition labeled 0”. By [8], this is equivalent to
finding a lasso ρ = γ1γ

ω
2 where γ1,2 are finite energy-feasible runs and γ2 is a cycle in which the

acceptance set 0 may not appear.

In this section, we examine different approaches for solving energy problems in co-Büchi au-
tomata. We first design algorithms inspired by Büchi solving techniques, then propose a new
semiring called semiring of energy functions that allows us to use a different approach to solve
energy problems.

3.1 ▷ A first algorithm
We first use a “naive” algorithm, presented in Algorithm 6, to find energy-feasible runs derived

from the Büchi solving algorithm: given that the first step of this algorithm already calculates
all energy-optimal paths starting from s0, we can search for energy-feasible cycles that do not
contain transitions equipped with the color 0 by removing every such transition in a new, reduced
automaton A′.

Since the second step of the Büchi solving algorithm (already presented in Algorithm 1) searches
for cycles traversing a back-edge, that is a transition that accepts the color 0 in a WBA, we can
create an equivalent Büchi automaton of A by promoting every transition in A′ to back-edge,
setting the acceptance condition of this new automaton to Inf(0) and solve a Büchi problem on
it.

Algorithm 6: “Naive” solving for co-Büchi
Data: a co-Büchi (generalized) ω-automaton A = (M,S, s0, T), an initial state s0, a weak

upper bound WU , an initial credit c0
Result: a BuechiResult

1 begin
2 en, pred = the optimal energy predecessors in A′

3 for col ∈M do
4 A′ ←− A with the color col removed
5 set acceptance condition of A′ to Büchi
6 for e ∈ T do
7 set acceptance of e to {0}

8 res←− BuechiEnergy(A′, s0,WU, c0, en, pred)
9 if res is not null then

10 return res

12

Before proceeding to the time complexity analysis of this algorithm, we first need to determine
the complexity of the Büchi solving algorithm. Let k = |M| the number of colors, n = |S| the
number of states and t = |T | the number of transitions of A. In the case A is sparse, we have
t = O(n).

It is shown in [8] that Algorithm 3 is in polynomial time, but no estimate of its complex-
ity appears in this paper. As such, we need first to calculate the complexity of this algorithm
that appears several times in the Büchi solving algorithm. We already know that the modified
Bellman-Ford algorithm keeps its original complexity of O(nt).

To calculate the time complexity of the optimal energy prefixes calculation algorithm, we must
determine when the while loop is exited, that is when E reaches a fixed point. Unfortunately, there
is no easy way of knowing this for an arbitrary Büchi automaton A. However, we can estimate
that in the worst case, we would need to pump each one of the n states once (this is an O(n)
operation). Since a loop in A cannot contain more than n states, we can deduce the complexity of
Algorithm 3, which is O(n3) if A is sparse, or O(n2t) if A is particularly dense. In the following,
we consider A to be a dense automaton.

Algorithm 1 iterates over each SCC, however, in the worst case, the automaton is composed
of one single SCC composed of n states and t transitions. Such an automaton does not allow
returning early as it is the case when traversing an automaton with multiple SCCs: as the algorithm
sequentially analyzes the SCCs of the automaton, it doesn’t need to traverse next SCCs if it
manages to find an accepting lasso in a SCC early on.

The equivalent degeneralized version of the automaton is used in case it has a generalized
acceptance condition (actually, this is also the case in standard Büchi acceptance, with k = 1).
This new automaton has k levels with O(n) states and O(t) transitions for each level: for this
process, we only need to iterate over the k colors and the t transitions for each color. As such,
the degeneralization process is in O(kt), creating an equivalent automaton with O(kn) states and
O(kt) transitions, including O(t) back-edges.

In the degeneralized automaton, we need to look at its back-edges; there may be by definition
at most t back-edges. Optimal energy prefixes are calculated, possibly for each one of the kn
states in the degeneralized automaton, for each one of the O(t) back-edges (this operation is
in O((kn)2(kt)) = O(k3n2t)). As such, the final complexity of the Büchi solving algorithm is
O(k4n3t2).

3.2 ▷ Refinements towards an optimized algorithm
As stated in Section 3.1, the naive algorithm might not be optimized: as such, we propose

other algorithms to find cycles in A and compare them with the existing naive one.

Algorithm 7 can be interpreted as a variation of the classic depth-first search (DFS) algorithm
on directed graphs: for every color col that appears in the acceptance condition,

• we consider A′ the automaton obtained from removing the color col from A;

• as in a classical DFS, we keep the list of successors and already discovered states. However,
our approach differs by storing couples (state, inbound energy) composed of a state and the
energy accumulated when entering the state instead of storing only the state. To be able to
reconstruct loops, an element of the stack of successors also contains additional information
about the path from s0 to the current state, which is a list of transitions. This stack starts
with the state s0, also called the closing state, coupled with the initial credit. This state was
not reached by using any transition, being the starting state;

• we also keep a list of every visited loop;

13

Algorithm 7: Co-Büchi solving using cycle storage
Data: a co-Büchi (generalized) ω-automaton A = (M,S, s0, T), an initial state s0, a weak

upper bound WU , an initial credit c0
Result: a BuechiResult

1 en ←− optimal energy prefixes in A from its initial state
2 for col ∈M do
3 A′ ←− A with color col removed
4 succ←− [([], None, (s0,c0))]
5 discovered←− []
6 examinedLoops←− []
7 while succ contains elements do
8 (path, currentEdge, (currentState, currentEnergy)) = succ.pop()

/* Verify loop acceptance if they exist */
9 if path.length ̸= 0 then

10 closingState←− path.first
11 if closingState occurs twice in the path then
12 loopEdges←− edges composing the loop
13 while the first state to appear in the loop is not the smallest do
14 shift loopEdges

15 add loopEdges to examinedLoops
16 energy ←−en[closingState]
17 for _ ∈ [0, path.length] do
18 energy ←− sum of the energies of the path
19 if energy is lower than at the start or energy < 0 then
20 shift the loop

21 else
22 return the loop

/* Continue the DFS if there is no loop */
23 if (currentState, currentEnergy) is not discovered and the detected loop (if

applicable) was not already seen then
24 discover (currentState, currentEnergy)
25 for e ∈ edges departing from currentState do
26 if energy after traversing e ≥ 0 then
27 add (path + [e], e, (e.destination, energy after traversing e)) to succ

/* We reached the end of the DFS without finding an accepting loop */
28 return no loop

• we start the DFS by getting the (state, energy) couple, its associated path and previous used
edge at the top of the stack of successors;

• if the popped path is not empty then we check if the path contains a loop, i.e. if a state
(ignoring the inbound energy) appears twice in the path:

– if the loop was already seen (if it exists in the list of already visited loops), we can ignore
it as we know this is an energy-negative loop (this loop can eventually be shifted, so we
must check for each visited loop if the shifted version of that loop correlates with the
loop that’s being processed);

14

– else, we have found a potential loop. We delete the prefix (the part that doesn’t loop)
from the path. Starting from its closing state with the initial energy c0, we can check
if the final energy reached when using all transitions in the loop is greater or equal to
the initial energy. If this is the case, then we have found an accepting loop.
There are cases when calculating the final energy for the closing state only is not suffi-
cient. Indeed, the loop may need to be traversed a second time, for example in Figure
7 where the initial energy at the closing state was already WU = 10:

0 1 2 3
10 1 0

-1

Figure 7: On first iteration, the energy attained after traversing the (1,2,3) loop will be lower than
when entering for the first time state 1 (from 0 with 10 energy) despite it being a non-negative
loop.

• we then continue the DFS by pushing to the stack the successors of the current state, as well
as the energy attained when reaching them, by updating the path used to reach them.

We detail an execution of this algorithm, where α = Fin(0), WU = 5 and the initial credit is
0, on the automaton depicted in Figure 8 which has an energy-feasible cycle:

0 1 3

4

5

2

9

8

7

6

10

0•
5

−5

−4

−3

−1

5

5

5

5

−1

−2

−3

−4

0

Figure 8: An automaton with one energy-feasible loop and several energy-negative loops. This
example is inspired from Figure 6 in [8].

• the self-loop around 0 is removed since it accepts the only color of the acceptance condition;

• we start from state 0 with initial credit 0;

• as the path used to reach 0 is empty, we do not analyze the path;

• we continue the DFS: 0 is marked as discovered, we push its successor 1 to the stack, the
energy attained at 1 is 5;

• state 1 is popped, we analyze the path used to reach it (the sole transition from 0 to 1
weighted with 5): as 1 does not appear twice in this path, we continue the DFS by pushing
its successors 2, 3, 4 and 5 with associated reached energies;

15

• we pop state 5 with an inbound energy of 0. This still doesn’t form a loop, so we push 9
with an attained energy of 5;

• we pop state 9 with an inbound energy of 5. This still doesn’t form a loop, so we push 10
with an attained energy of 4;

• we pop state 10 with an inbound energy of 4. This still doesn’t form a loop, so we push 1
with an attained energy of 4 (we already visited state 1 but with an inbound energy of 5
instead of 4);

• we pop state 1 with an inbound energy of 4. This forms a loop: the normalized form of this
loop is {1, 5, 9, 10, 1}.
Starting from state 1 with an optimal energy prefix of 5 (this was calculated at the start of
the algorithm), we take every transition of this loop, but end with an energy of 4. We redo
this process from the next state of the loop (5) but still end with a final energy that is lower
than the starting energy at this state. The same applies for every remaining state of the
loop: this is not an energy-feasible loop. As this is a loop, we do not continue the DFS from
1 with an inbound energy of 4;

• we continue the DFS instead from state 4 reached with an inbound energy of 1 (this couple
was pushed when we first visited state 1), only to end with a loop that is not energy-feasible.
The same applies for state 3 reached with an inbound energy of 2;

• we successively pop states 2 (inbound energy 4), 6 (inbound energy 5), 10 (inbound energy
1) and 1 (inbound energy 1). This forms the loop {1, 2, 6, 10, 1}.
Starting from state 1 with an optimal energy prefix of 5, we end with an energy of 1. We
shift the loop and start at state 2 with an optimal energy prefix of 4, but end with an energy
of 0. We shift the loop again, starting at state 6 with an optimal energy prefix of 5, and end
with an energy of 5: we have found an energy-feasible loop.

Instead of using a list of set of edges for storing already examined loops, we could have used
a Python dictionary to reduce the time complexity of checking if a loop was already examined,
with the first traversed edge being the key. However, edges in wspot are instances of the (C++)
Spot built-in class spot::twa_graph_edge_data, and do not implement any hash function. As
such, we cannot use such a dictionary unless we directly modify the Spot Python bindings, which
is outside the scope of our work.

Using the same notations as in the naive algorithm complexity analysis (k = |M| is the number
of colors, n = |S| the number of states, t = |T | the number of transitions), we can calculate the
complexity of Algorithm 7.

For each color, we need to traverse all the n states of the automaton. Given a state s, checking
if s appears twice in the path, i.e. checking if there is a loop in the path used to reach s, takes O(t)
operations.

If there is indeed a loop in this path, it is first normalized, which is an O(t) operation. We
then need to check if this loop is already in the list of examined loops (this means the current
loop is not energy-feasible, since if this was the case, then the algorithm would return early).
Unfortunately, we do not know a precise upper bound for the number of loops in an automaton
that is not exponential in the number of states (in [2], which focuses on directed graphs with no
short cycles, it is demonstrated that a directed graph, and by extension an automaton, with n
states has O(3n) cycles if it has no short cycles, that is cycles of length greater than n− k where
3k < n). Therefore, the cycle storage based algorithm is also exponential in the number of states.

Algorithm 8, proposed by Philipp, is another variation of the DFS inspired by the original
Büchi solving algorithm. It is similar to the solver using the cycle storage method (Algorithm 7),
but differs in that the state pairs now contain the predecessor information instead of the incoming
energy.

16

Algorithm 8: Co-Büchi solving using backtracking
Data: a co-Büchi (generalized) ω-automaton A = (M,S, s0, T), an initial state s0, a weak

upper bound WU , an initial credit c0
Result: a BuechiResult

1 begin
2 for col ∈M do
3 A′ ←− A with color col removed
4 succ←− [([], None, (s0,pred))]
5 discovered←− []
6 while succ ̸= [] do
7 (path, currentEdge, (currentState, predecessor)) = succ.pop()

/* Verify loop acceptance if they exist */
8 if path.length ̸= 0 then
9 closingState←− path.first

10 if closingState occurs twice in the path then
11 pump loop twice
12 finalEnergy ←− energy at closingState
13 backtrack loop from closingState
14 if energy ≤ finalEnergy then
15 return the loop

/* Continue the DFS */
16 if (currentState, predecessor) is not discovered then
17 discover (currentState, predecessor)
18 for e ∈ edges departing from currentState do
19 if energy after traversing e ≥ 0 then
20 add (path + [e], e, (e.destination, currentState))

/* We reached the end of the DFS without finding an accepting loop */
21 return no loop

In a way similar to [8] and Algorithm 3, we can pump encountered loops (when we process a
state that has already been processed) twice using predecessor information, and determine if this
loop is energy-positive by starting from the end state, using the transitions that compose the loop
backwards and comparing the resulting energy with the starting energy at the end state.

We use the same notations as in the previous complexity analysis (k = |M| is the number of
colors, n = |S| the number of states, t = |T | the number of transitions) in the complexity analysis
of the co-Büchi solving algorithm using backtracking.

For each color, we need to traverse all the n states of the automaton (just like the algorithm
using cycle storage). Given a state s, a loop that terminates at s has a length of O(n); we need to
pump this loop twice (this is an O(n) operation). Thus, the backtracking process inside a loop is
also an O(n) operation.

After the potential loop has been processed, the DFS continues by discovering the current
(state, predecessor) couple and finding the next couples to be pushed on the stack. Since there are
t transitions, there are O(t) potential next elements to be pushed, giving us a total complexity of
O(k(n2 + nt)).

17

3.3 ▷ Energy functions
The motivation for using the Floyd-Warshall algorithm instead of the (modified version of

the) Bellman-Ford algorithm used in Algorithm 1 is that we can run the former only once to
find positive loops, since we can have a constant time access to the maximum energy difference
obtained by going from a state to itself; whereas the latter must be run every time the starting
point of a potential energy positive loop is found. Moreover, it also allows us to skip the optimal
energy prefixes and predecessors calculation step, as we would have for each pair of states a direct
access to possible values for the final energy reached, the states traversed to reach the destination
state, and as such the optimal energy prefix.

We recall the general form of the Floyd-Warshall algorithm on weighted automata (Algo-
rithm 9):

Algorithm 9: Standard Floyd-Warshall algorithm
Data: an integer-weighted automaton A = (M, S, s0, T)
Result: a matrix M of the shortest distances between each pair of states

1 begin
2 n←− number of states of A
3 M ←− n× n matrix filled with ∞
4 for T ∋ e from u to v with weight k do
5 M [u][v] ←− k

6 for s ∈ S do
7 M [s][s] ←− 0

8 for k ∈ [1, n] do
9 for i ∈ [1, n] do

10 for j ∈ [1, n] do
11 M [i][j] ←− min(M [i][j],M [i][k]+M [k][j])

12 return M

The Floyd-Warshall algorithm is usually used to compute minimal distances between every
pair of states in directed graphs, stored in a square matrix of size the number of states of the graph.
By inverting the sign of every weight, it is also possible to compute maximal distances to detect
positive loops.

An application of this algorithm uses the tropical semiring (the semiring formed by the set of
real numbers R∪{+∞} with min as the additive operator and the usual addition on real numbers
as the multiplicative operator), also called min-plus semiring ; but it can be extended to other
semiring structures according to [11].

However, there are multiple reasons on why this algorithm cannot be used as is to solve energy
problems:

• the algorithm loses the initial energy information. In the following two automata, depending
on the initial energy, no energy-feasible runs may exist for WU = 10:

0 1 2
-5

0

0

Figure 9: The loop (1, 2)ω, is only accessible if the initial energy is between 5 and 10 because of
the transition going from 0 to 1.

18

0

1

2

3

10 10

-8-8

Figure 10: Due to the WU = 10 constraint, the transition going from 3 to 0 is unusable.

• in the case where multiple accepting loops exist, the Floyd-Warshall algorithm only
returns the loop with the greatest (positive) energy difference. This can lead to scenarios
where the algorithm fails to detect the existence of an infinite run, for example due to an
insufficient initial energy. As an example, consider the following automaton for WU = 10:

0 2

1

3

-5

-1

10

2

0

Figure 11: An automaton with two different positive loops.

In this automaton, two positive loops exist: (0, 1, 3, 0), with a net energy gain of 5, which is
accessible if the initial energy is greater than 5, and (0, 2, 3, 0), with a net energy gain of 1,
which is accessible if the initial energy is greater than 1.

The loop using state 1 is “more interesting” from an energy point of view, but it cannot be
accessed if the initial energy is between 1 and 4. However, the classic Floyd-Warshall
algorithm fails to detect the positive loop using state 2 since it is “less interesting” as the
energy gain is lower: it will consider that no positive loop exists when searching for a loop
with an initial energy of 1 to 4.

• most importantly, in energy problems, we are no longer working on a semiring, as transitions
lose their associative property. In Figure 10, in a standard WWA context, it would have been
possible to group together the transition going from 1 to 2 and the one going from 2 to 3 to
form an unique transition going from 1 to 3 with weight 2. In an energy problem context,
this is no longer possible as using the transition from 1 to 3, going above the WU, and then
using the transition from 2 to 3 is different from simply adding 2 to the energy.

Instead, we elaborate on the notion of energy functions, already introduced in [4] but in the
lower bound scenario (i.e. not in the weak upper bound scenario), and prove in Theorem 28 that
they form a semiring structure, thus enabling us to use the Floyd-Warshall algorithm on au-
tomata weighted with them. Note that we will only define energy functions in this section; the
link between energy functions and energy problems will be discussed in Section 4.

Our definitions follow the usual notations from the definition of A (such as WU). An energy
function can be interpreted as a function of [0,WU] into [0,WU] that associates an input energy
(for example, the energy before using a transition or a sequence of transitions) with an output
energy (the energy after using a transition).

In the following, N is the set of natural numbers, Z the set of integers, and N∗ = N \ {0}.

19

Definition 1 (Energy domain). An energy domain is an interval I ⊆ [0,WU] of the form
[α, α], [α, β], [α, β[,]α, β[, or]α, β] for (α, β) ∈ [0,WU]2 and α < β.

An energy domain of the form [α, α] is also called a point.

We will see in Section 4 that we need this specific structure to represent some edge cases that
may appear in some energy problems.

Definition 2 (Energy segments). An energy segment is a function f : I −→ [0,WU] defined
on an energy domain I that is of the form f : ein 7−→ aein+b where a ∈ {0, 1} and b ∈ Z. The
image of f must remain in [0,WU] for the energy segment to be defined. It is also equipped
with a predecessor which is either s ∈ S or the undefined predecessor, which is written as
undef.

As an exception to this definition, the null energy segment on I defined as null : ein 7−→ ⊥,
regardless of its predecessor, is also considered an energy segment even though ⊥, a special
value indicating inaccessibility, is not an element of [0,WU]. Unless explicitly specified, the
predecessor for the null energy segment will be considered as undef.

In the following, when talking about an energy segment defined on I, we also include the
null segment on I. I is called the energy domain of f , or simply domain of f , and is written
as dom(f).

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

3

6

undef

Figure 12: Examples of energy segments.

Figure 12 illustrates some possible energy segments:

• an energy segment of equation ein 7−→ ein + 4 defined on [1, 6[, with predecessor 3;

• an energy segment of equation ein 7−→ 3 defined on [4, 8[, with predecessor 6;

• the null energy segment defined on [7, 9[, with predecessor undef.

An energy segment with an undef predecessor usually means that it is better to stay at the
current state rather than using a transition that departs from this state, while an energy segment
with an equation of the form ein 7−→ ⊥ means that the target state is unreachable, for example if
there exists no path from the source towards the target or if there is not enough energy to use any
available path reaching the target.

We use the notation [0,WU] = [0,WU] ∪ ⊥ frequently when designating the set of possible
values for an energy segment or function to increase readability.

20

Definition 3 (Energy functions). An energy function with a weak upper bound of WU is a
function F : [0,WU] −→ [0,WU] composed of p ∈ N∗ energy segments {fk}1≤k≤p. Each seg-
ment fk for k ∈ [1, p] is defined on its domain dom(fk), which respect the following properties:
∀k ∈ [1, p]

• if k ̸= p then sup(dom(fk)) = inf(dom(fk+1)) (energy segments are ordered by increasing
domain and there are no gaps where no energy segment exists);

• if k = 1 then dom(fk) is closed on the left and its minimum is 0;

• if k = p then dom(fk) is closed on the right and its maximum is WU ;

• if k ̸= p and dom(fk) is not a point then dom(fk) is open on the right;

• if k ̸= p and dom(fk) is a point then

– dom(fk) is closed by definition;

– dom(fk+1) is open on the left, else dom(fk+1) is closed on the left.

The null energy function is defined as the function that contains only the null energy
segment defined on [0,WU].

As a convention, we use lowercase letters to designate energy segments (such as f or g) and
uppercase letters to designate energy functions (such as F or G).

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥
undef

2
undef

4

Figure 13: Ftest, a fully defined energy function.

Figure 13 visually represents an example energy function called Ftest for WU = 10. It is
composed of four energy segments:

• the null energy segment defined on [0, 4[, with predecessor undef;

• the energy segment of equation ein 7−→ ein defined on [4, 4], with predecessor 2;

• the energy segment of equation ein 7−→ ein defined on]4, 7[, with predecessor undef;

• the energy segment of equation ein 7−→ 10 defined on [7, 10], with predecessor 4.

21

Proposition 4. Let F = (fk)1≤k≤p an energy function. {dom(fk) }1≤k≤p forms a partition
of [0,WU].

Proof.
We prove by induction for u ∈ [1, p] that the {dom(fk)}1≤k≤u form a partition of Pu where

Pu =
⋃

1≤i≤u dom(fi).

• For u = 1: dom(f1) is a partition of itself.

• Suppose that the {dom(fk)}1≤k≤u form a partition of Pu for u ∈ [1, p − 1] (the condition
u ̸= p ensures that the next energy segment exists).
By Definition 3, if Pu is closed on the right then the next energy domain is open on the
left (i.e. they do not intersect), thus {dom(fk)}1≤k≤u ∪ dom(fu+1) remains a partition of
Pu ∪ dom(fu+1), which is also Pu+1. The reasoning if Pu is open on the right is similar (the
next energy domain is closed on the left). Therefore, the property also holds for u+ 1.

We remark that Pp = [0,WU]. Thus {dom(fk)}1≤k≤p forms a partition of [0,WU]. ■

The previous proposition allows us to consider that a set of t ∈ N∗ energy segments {fk}1≤k≤t
can be considered as an energy function if the domains of these segments do not overlap (i.e.
∀(i, j) ∈ [1, t]2 s.t. i ̸= j | dom(fi) ∩ dom(fj) = ∅) and if the energy segments are ordered by
ascending domain (i.e.: ∀(i, j) ∈ [1, t]2,∀x ∈ dom(fi),∀y ∈ dom(fj), x < y).

Definition 5 (Set of energy functions on WU). The set of all energy functions with a weak
upper bound of WU is written as EF (WU).

We suppose WU already defined, and we implicitly consider energy functions to have a weak
upper bound of WU .

Definition 6 (Restriction of an energy segment). Let f an energy segment on its domain I.
The restriction of f to the energy domain J is written as f |J and is defined when I ∩ J ̸= ∅.
In that case, f |J is an energy segment defined on I∩J with the same equation and predecessor
as f .

Proposition 7. Let J an energy domain and f an energy segment so that f |J is defined.
f |J is an energy segment.

Proof. f is already an energy segment and J ⊆ [0,WU], thus the result. ■

Definition 8 (Restriction of an energy function). Let F = {fk}1≤k≤p an energy function and
J an energy domain that will be considered w.l.o.g. closed to the left and open to the right.

We define F |J the restriction of F to J as the set of every segment fk for which fk|J is
defined, completed with null energy segments outside of J , that is:

F |J := {A, {fk|J | dom(fk) ∩ J ̸= ∅}, B}

where A is the null energy segment defined on [0, inf(J)[if inf(J) > 0 and B is the null energy
segment defined on [sup(J),WU] if sup(J) < WU .

We now introduce the concept of discontinuity, which may also be seen as the boundaries of
all the energy segments of an energy function.

22

Definition 9 (Discontinuities). The discontinuities of an energy function F = {fk}1≤k≤p are
Disc(F) := {0} ∪ {sup(dom(fk))}1≤k≤p. Note that 0 and WU are considered discontinuities.

For example, the discontinuities of the Ftest function defined in Figure 13 are {0, 4, 7,WU}.

Definition 10 (Pairs of discontinuities). Let F an energy function, Disc(F) = {Dk}0≤k≤p
its discontinuities and k ∈ [1, p].

By definition of F , there exists an energy segment f which domain is an energy domain
dom(f) between Dk−1 and Dk. Suppose w.l.o.g. that δk is closed to the left and open to the
right. In this case, we call pair of discontinuities the energy domain δk between Dk−1 and Dk

that respects the following:

• if k = 1, then δk is closed on the left;

• if k = p, then δk is closed on the right;

• if Dk−1 = Dk, then δk is closed on both sides;

• if k > 1 and δk−1 is closed on the right, then δk is open on the left;

• else δk is closed on the left and open on the right.

As such, the pairs of discontinuities of F form the {δk}1≤k≤p.

This definition is similar to the definition of the energy domains of F , but unlike energy
domains, it can be extended to multiple energy functions. This will be useful when examining the
results of the ⊕ and ⊗ operations.

Definition 11. In a definition, a proposition, or a proof, we say that we bind the {δk}1≤k≤n
to an energy function F (or that the {δk}1≤k≤n are bound to F) when we consider inside the
scope of that definition, proposition, or proof, that n = |Disc(F)| − 1 and that the pairs of
discontinuities of F , {δk}1≤k≤n, are generated from Disc(F).

Definition 12 (Combination of discontinuities). Let F,G two energy functions, Disc(F) and
Disc(G) their respective discontinuities, p = |Disc(F)| and q = |Disc(G)|.

The list of discontinuities resulting from the combination of F’s discontinuities and G’s,
written as Disc(F,G), is defined as

Disc(F,G) := Disc(F) ∪Disc(G) so that Disc(F,G) is ordered ascendingly

This definition is extendable to more than two energy functions by considering the discon-
tinuities of these other functions.

Proposition 13. Let F,G two energy functions, p = |Disc(F)| and q = |Disc(G)|.

max(p, q) ≤ |Disc(F,G)| ≤ p+ q

Proof. Properties of the union on sets. ■

23

Definition 14. Similarly to Definition 11, we say that we bind the {δk}1≤k≤n to the t ∈
N∗ energy functions (Fi)1≤i≤t (or that the {δk}1≤k≤n are bound to the (Fi)1≤i≤t) when we
consider that n = |Disc((Fi)1≤i≤t)| − 1 and that the pairs of discontinuities {δk}1≤k≤n are
generated from Disc((Fi)1≤i≤t).

We now define the additive and multiplicative operations on energy functions.

Lemma 15. Let F = {fk}1≤k≤p and G = {gk}1≤k≤q two energy functions, {δi}1≤i≤n generated
by the discontinuities of F and G, and i ∈ [1, n]. There is one and only one segment fu of F and
gv of G so that δi ⊆ dom(fu) and δi ⊆ dom(gv).

In other words, there are no situations where δi overlaps with more than two segments of F or
G.

Proof. By contradiction:
suppose w.l.o.g. that δi overlaps with fu and fu′ , two segments of F . Then, since fu and fu′

are two different segments, there exists an additional discontinuity d ∈ δi. This contradicts with
the definition of a pair of discontinuities. ■

Corollary 16. F |δi (F restricted to δi) contains a single energy segment.

Proof. Using the previous lemma, we can affirm the existence of a segment fu of F so that
δi ⊆ dom(fu). This also means that δi ∩ dom(fu) ̸= ∅. As F |dom(fu) = fu is already an energy
segment, according to Proposition 7, fu|δi is an energy segment. ■

We now define the additive (⊕) and multiplicative (⊗) operations on energy segments, then
on energy functions. Translated to the domain of WBAs, if we have an existing energy function F
associated with a certain sequence of transitions T between two states, the ⊕ operation represents
the comparison of T with another sequence of transitions, while the ⊗ operation represents the
composition of T with another transition that starts at the final state reached by using T .

Definition 17 (Maximum of two energy segments). Let (α, β) ∈ [0,WU]2, I an energy
domain between α and β, and f : x 7→ a1x+ b1 (predecessor s1), g : x 7→ a2x+ b2 (predecessor
s2) two energy segments defined on I. The ⊕ operation between f and g is defined as

f ⊕ g :=



g if a1 = a2 ∧ b1 = b2 ∧ s1 = undef

f if a1 = a2 ∧ b1 = b2 ∧ s1 ̸= undef

f if a1 = a2 ∧ b1 > b2

g if a1 = a2 ∧ b1 < b2

f if a1 ̸= a2 ∧ f(β) > g(β) ∧ f and g do not intersect
g if a1 ̸= a2 ∧ f(β) < g(β) ∧ f and g do not intersect
η if f and g intersect

where

η :=

{
(f |[α,ι], g|[ι,β]) if f(α) > g(α)

(g|[α,ι], f |[ι,β]) if f(α) < g(α)

where ι = b2−b1
a1−a2

is the intersecting point of f and g, and f |I designates the restriction of
the energy segment f to some interval I (which is itself an energy segment).

Whether f and g intersect can be determined, for example, using the intermediate value

24

theorem:
f and g intersect ⇐⇒ f(α) > g(α) XOR f(β) > g(β)

where XOR denotes the usual exclusive-OR operation on booleans.

An illustration of the ⊕ operation on energy segments is provided in Figures 14, 15 (non-
intersecting segments) and 16 (intersecting segments).

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1 ⊕

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

2

=

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1

Figure 14: ⊕ operation on two non-intersecting energy segments.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

2

⊕

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1 =

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1

Figure 15: ⊕ on energy segments is commutative.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1 ⊕

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

2

=

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

2
1

Figure 16: ⊕ operation on two intersecting energy segments.

We will define an intermediate operation called ×, or “cross”, that will be used in the definition
of ⊗.

Definition 18 (Cross operator). Let G an energy function, f an energy segment defined on
an energy domain I between α and β that is supposed w.l.o.g. closed to the left and open to
the right, Im(f) the image of f , i.e. Im(f) = {f(x) | x ∈ I}, and f−1 the inverse function of
f (obtained by inversing its equation) if f is not a constant energy segment.

In the case where f is a constant energy segment, the energy segment has an equation
of the form ein 7−→ k, where k ∈ [0,WU]. Since the domains of the energy segments of G
form a partition of [0,WU], there exists a segment of G, which we call g, such that b ∈ dom(g).

In the case where f is an ascending energy segment, the restriction of G to the interval

25

Im(f), written as G|Im(f), gives us a tuple of segments (potentially with only one segment in
it).

We consider {di}1≤i≤n+1 = {f(α)} ∪ (Disc(G) ∩ Im(f)) ∪ {f(β)} the ascendingly ordered
set of discontinuities that remain in G|Im(f), where n = |Disc(G) ∩ Im(f)|+ 1.

We also consider the n pairs of discontinuities formed by the {di}1≤i≤n+1, written as
(θi)1≤i≤n to avoid confusion with pairs of discontinuities of classic energy functions defined
on [0,WU] (note that no {δi}1≤i≤n are bound in this definition). According to Corollary 16,
we can deduct energy segments from the (θi)1≤i≤n: for i ∈ [1, n], we pose ri = G|θi the energy
segment resulting from the restriction of G to θi.

As such, we define the × operation between an energy segment and an energy function as
the following operation that returns a set of segments:

f ×G :=


{f} if f is the null segment on I

{c} if f is a constant energy segment
{ξi | i ∈ [1, n]} if f is an increasing energy segment

where

• c is the energy segment of equation x 7−→ g(k) defined on I of predecessor the predecessor
of the associated segment of G if it is not undef, the predecessor of f otherwise;

• ξi for i ∈ [1, n] is the energy segment defined on [f−1(di), f
−1(di+1)[of same equation

and predecessor as ri.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1 ×

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1 2

3

=

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1 2

3

Figure 17: × operation on an energy segment and an energy function.

Definition 19 (Operations on energy functions). Let F and G two energy functions and
{δi}0≤i≤n bound to (F,G), where n = |Disc(F,G)| − 1.

26

The additive and multiplicative operations on two energy functions F and G are defined
as

F ⊕G := {F |δi ⊕G|δi}1≤i≤n and F ⊗G := {F |δi ×G}1≤i≤n

Note that the definition of ⊗ holds thanks to Corollary 16, which ensures that no pair of energy
segments of the resulting energy function overlaps.

Proposition 20.

∀(F,G) ∈ EF (WU)2,∀x ∈ [0,WU] | (F ⊗G)(x) = G(F (x))

Proof.
Let F,G two energy functions, x ∈ [0,WU], n = |Disc(F,G)| − 1 and j ∈ [1, n] so that x ∈ δj .

We have (F ⊗G)(x) = {F |δi ×G}1≤i≤n(x) = (F |δj ×G)(x).
We then reason on the type of the energy segment F |δj .
• If F |δj is the null energy segment, then F |δj × G is the null energy segment on δj as well.

This also means that F (x) = ⊥, as such (F |δj ×G)(x) = G(F (x)) = ⊥.

• If F |δj is a constant energy segment of equation ein 7−→ b, then F |δj ×G is a constant energy
segment of equation ein 7−→ G(b). This also means that F (x) = b, as such (F |δj ×G)(x) =
G(b) = G(F (x)).

• If F |δj is an ascending energy segment of equation ein 7−→ ein + b, then F |δj × G is a
set of energy segments {ξk}1≤k≤t, where the {ξk}1≤k≤t are defined in Definition 18 and
t = |Disc(G) ∩ Im(F |δj)| + 1. As x ∈ δj , there is a k such that x ∈ dom(ξk). We consider
w.l.o.g. that dom(ξk) = [α, β[⊆ δj .
By definition, ξk is an energy segment which equation comes from G and respects the following
property: ∀u ∈ dom(ξk) | ξk(u) = G(F (u)). In particular, x ∈ dom(ξk). Thus ξk(x) =
(F |δj ×G)(x) = G(F (x)).

■

Proposition 21. EF (WU) is closed under ⊕ and ⊗.

Proof.
Let F and G two energy functions. We consider H = {hi}1≤i≤n the result of F ⊕G (the proof

is similar when considering F ⊗G).
For i ∈ [1, p], hi is either an energy segment defined on δi or a set of energy segments whose

domains form a partition of δi. We deduce the result since the (δi)1≤i≤n, by definition, form a
partition of [0,WU]. ■

Definition 22. Let f, g two energy segments defined on their respective energy domains.
If dom(f) is closed to the right and dom(g) is open to the left, or the other way around,

and if f and g share the same equation and predecessor, we can form a new energy segment
h with the same equation and predecessor as f and g that is defined on dom(f) ∪ dom(g).

We say that h is the assembly of f and g, or that we assemble f and g to form the new
energy segment h. This operation is written as f ⋄ g.

We also say that f and g are assemblable if f ⋄ g exists.

In the following, if f is an energy segment f1 and f2 are assemblable energy segments so that
f1 ⋄ f2 = f , we directly write f instead of writing {f1, f2} to designate the result of the assembly
operation.

In particular, we also have:

27

Proposition 23. Let f an energy segment defined w.l.o.g. on the energy domain I = [α, β[,
and τ ∈ I so that α < τ < β. We have

f |[α,τ [⋄ f |[τ,β[= f

Proof. We notice that f |[α,τ [and f |[τ,β[have the same equation and predecessor, and [α, τ [∪[τ, β[=
[α, β[= I, thus the result. ■

Proposition 24. Let (α, β) ∈ [0,WU]2 where α < β, I an energy domain defined from α
to β, which will be supposed w.l.o.g. closed to the left and open to the right, τ ∈ I so that
α < τ < β, f and g two energy segments defined on I, and H an energy function.

We have
{f |[α,τ [⊕ g|[α,τ [, f |[τ,β[⊕ g|[τ,β[} = f ⊕ g

and
{f |[α,τ [×H, f |[τ,β[×H} = f ×H

In other words, it is possible to cut f into two energy segments when calculating f⊕g or f×H
without changing the result of the operation. A direct corollary of this proposition is that f can
be further cut into more than two energy segments.

Proof. Let w.l.o.g. I = [α, β[, τ ∈ I so that α < τ < β, f and g defined on I and H an energy
function. To save space, let A = [α, τ [and B = [τ, β[.

• For ⊕:

– if f and g do not intersect, then we suppose w.l.o.g. that f ⊕ g = f . By definition of
⊕, we still have f |A ⊕ g|A = f |A and f |B ⊕ g|B = f |B . We obtain the result by using
Proposition 23.

– else, f and g intersect at ι ∈ I. We suppose w.l.o.g. that the maximal segment on [α, ι[
is f and the maximal segment on [ι, β[is g, i.e. f ⊕g = {f |[α,ι[, g|[ι,β[}. We also suppose
w.l.o.g. that τ ∈ [α, ι[.
By definition of ⊕, we have f |A⊕g|A = f |A. Also by definition of ⊕, we have f |B⊕g|B =
{f |[τ,ι[, g|[ι,β[}. We obtain the result by noticing that f |A and f |[τ,ι[are assemblable and
f |A ⋄ f |[τ,ι[= f |[α,ι[.

• For ×: the cases where f is the null energy segment on I or a constant energy segment are
directly deductible from Definition 18. As such, we will consider f to be an increasing energy
segment. We will also consider w.l.o.g. that the energy domain of f is of the form [α, β[.
According to Proposition 7, f |A and f |B are also (increasing) energy segments with the same
equation and predecessor as f .
In this case, f × H is a set of p > 1 energy segments, and f × H = {ξi}1≤i≤p where the
{ξi}1≤i≤p are defined in Definition 18, with their respective domains {[f−1(di), f−1(di+1)[}1≤i≤p,
and the (di)1≤i≤p+1 are the discontinuities that remain in G|Im(f).
By definition, there exists a ξk with 1 ≤ k ≤ p where τ ∈ dom(ξk). τ partitions the domain of
ξk into two intervals [dk, τ [and [τ, dk+1[. The other {ξi}1≤i≤n|i ̸=k are identical by definition
to the energy segments that appear in {f |A×H, f |B×H}. We deduce the result by noticing
that the energy segment defined on [dk, τ [and the energy segment defined on [τ, dk+1[both
with same equation and predecessor as ξk are assemblable and yield ξk once assembled.

■

28

Proposition 25. Let F and G two energy functions, n = |Disc(F,G)| − 1, r ≥ n and
D′ = {D′k}0≤k≤r ∈ [0,WU]r an ascending set of discontinuities so that Disc(F,G) ⊆ D′.

The elements of D′ form pairs of discontinuities written as {θk}1≤k≤r to avoid confusion
with pairs of discontinuities generated by Disc(F,G). In this case, we have:

{F |θi ⊕G|θi}1≤i≤r = F ⊕G and {F |θi ×G}1≤i≤r = F ⊗G

Proof. This results from the application of Proposition 24 on every energy segment of F and G for
the ⊕ case, and every energy segment of F for the ⊗ case. ■

This proposition allows us to introduce additional arbitrary discontinuities in the computation
of F ⊕G or F ⊗G.

It also allows us to introduce the cleaning algorithm, presented in Algorithm 10, that will be
used as a handy utility tool for building energy functions in Section 5: it merges adjacent energy
segments with the same equation and predecessor to reduce the total number of energy segments.
Note that this algorithm clearly returns a set of energy segments where their domains form a
partition of [0,WU], i.e. the cleaning algorithm returns an energy function. This cleaned energy
function is equivalent to its uncleaned counterpart thanks to Proposition 25.

Definition 26 (Cleaned function). An energy function F = {fi}1≤i≤n is cleaned iff no pairs
of energy segments of F are assemblable, i.e.

F is cleaned ⇐⇒ ∀(i, j) ∈ [1, n]2 | i ̸= j =⇒ fi and fj are not assemblable

Algorithm 10: Cleaning algorithm
Data: a set of energy segments Y that form an energy function
Result: a set of energy segments that is equivalent to Y

1 begin
2 new_segs ←− []
3 next_seg ←− None
4 for old_seg : ein 7−→ aein + b ∈ Y do

/* merge segments with the same equation */
5 if old_seg and next_seg are assemblable then
6 next_seg ←− next_seg ⋄ old_seg

7 else
8 add next_seg to new_segs
9 next_seg ←− old_seg

/* add the remaining segment */
10 if next_seg ̸= None then
11 add next_seg to new_segs

12 return the cleaned energy function formed by new_segs

Theorem 27. Let F an energy function. In the weak upper bound context, F is increasing.

We will demonstrate Theorem 27 in Section 4. For now, we consider energy functions to be
increasing.

29

Theorem 28. Let 0̄ the energy function composed of the single segment ein 7−→ ⊥ (predecessor
undef) defined on [0,WU], and 1̄ the energy function composed of the single segment ein 7−→
ein (predecessor undef) defined on [0,WU].

(EF (WU),⊕,⊗, 0̄, 1̄) is a semiring.

Proof.

• EF (WU) with ⊕ and 0̄ is a commutative monoid:

– ⊕ is stable in EF (WU) by Proposition 21;

– the neutral element for ⊕ is 0̄;

– it is clear that ⊕ is associative as well as commutative (by properties of ⊕ on energy
segments).

• EF (WU) with ⊗ and 1̄ is a monoid:

– ⊗ is stable in EF (WU) by Proposition 21;

– the neutral element for ⊗ is 1̄;

– let F,G,H three energy functions and x ∈ [0,WU]. Using Proposition 20, we have

((F ⊗G)⊗H)(x) = H((F ⊗G)(x))

= H(G(F (x)))

and

(F ⊗ (G⊗H))(x) = (G⊗H)(F (x))

= H(G(F (x)))

Thus ⊗ is associative.

• ⊗ is distributive to the right over ⊕: let (F,G,H) ∈ EF (WU)3, D = (Dk)1≤k≤r+1, n =
|Disc(F,G,H)| − 1 and {δi}1≤i≤n bound to F , G and H.

We have
(F ⊕G)⊗H =

(
((F ⊕G)⊗H)|δi

)
1≤i≤n

and
(F ⊗H)⊕ (G⊗H) =

(
((F ⊗H)⊕ (G⊗H))|δi

)
1≤i≤n

By Proposition 21, these are energy functions.

Let the following energy functions:

A =
(
((F ⊕G)⊗H)|δi

)
1≤i≤n and B =

(
((F ⊗H)⊕ (G⊗H))|δi

)
1≤i≤n

We can then prove that
∀x ∈ [0,WU] |A(x) = B(x)

Let x ∈ [0,WU]. By definition of D, there exists a k ∈ [1, n] such that x ∈ δk. Suppose
w.l.o.g. that F |δk ⊕ G|δk = F |δk , i.e. ∀x ∈ δk | F (x) ≥ G(x) (if these energy segments
intersect, we can restrict further δk by considering the intersection of the two relevant energy
segments).

30

A(x) = ((F ⊕G)⊗H)|δk(x)
= {(F ⊕G)|δj ×H}1≤j≤n|δk(x) [Definition 19]
= ((F ⊕G)|δk ×H)(x)

= ({F |δj ⊕G|δj}1≤j≤n|δk ×H)(x) [Definition 19]
= ((F |δk ⊕G|δk)×H)(x)

= (F |δk ×H)(x) [initial supposition]
= (F ⊗H)(x) [x ∈ δk]
= H(F (x)) [Proposition 20]

and

B(x) = ((F ⊗H)⊕ (G⊗H))|δk(x)
= ({F |δj ×H}1≤j≤n ⊕ {G|δj ×H}1≤j≤n)|δk(x) [Definition 19]
= ((F |δk ×H)⊕ (G|δk ×H))(x)

= ((F ⊗H)|δk ⊕ (G⊗H)|δk)(x) [Definition 19]
= max((F ⊗H)|δk(x), (G⊗H)|δk(x)) [Definition 17]
= max((F ⊗H)(x), (G⊗H)(x)) [x ∈ δk]
= max(H(F (x)), H(G(x))) [Proposition 20]
= H(F (x)) [H is increasing, initial supposition]
= A(x)

Thus ⊗ is distributive to the right over ⊕. The demonstration of the distributivity of ⊗ to
the left is similar.

• the null energy function is an annihilator for ⊗ to the left and to the right, by definition of
⊗ on energy segments.

■

This allows us to use the Floyd-Warshall algorithm on ω-automata weighted with energy
functions. However, for the time being, A (the automaton we’re working on) is still valued with
integer weights. As such, we need a means of translating integer weights in A into elements of our
newly defined semiring.

4 ▷ Application of energy functions to energy problems

In this section, we will use energy functions as a new means of solving energy problems on
WWAs.

4.1 ▷ Mutators
To transform our WWA with integer weights A into an automaton compatible with our newly

defined energy functions, we first need to define an intermediate function that returns an appro-
priate energy function from an integer-weighted transition in A.

We recall that an integer-weighted WWA is a tuple of the form (M, S, s0, T, α) where:

• M is a finite set of integer-labeled colors;

• S is a set of integer-labeled states;

31

• s0 ∈ S;

• T ⊆ S × 2M × R × S is a set of transitions valued in Z. We call UZ = N × 2N × Z × N the
(infinite) set of all possible Z-valued transitions of an automaton of WWA(Z);

• α is an acceptance condition as defined in Section 1.

Let WWA(Z) the set of integer-weighted ω-automata. We similarly call the set of energy
function-weighted ω-automata WWA(EF (WU)).

As such, we provide means of converting the automaton A ∈ WWA(Z) to a new automaton
A′ ∈WWA(EF (WU)).

Definition 29 (Integer mutator). Let R a semiring. An integer mutator is a total function
σR : UZ −→ UR.

An integer mutator is effectively a function that allows to convert the weight of an integer-
weighted transition into an element of R. Since EF (WU) is a semiring, we can define σEF (WU).

Definition 30 (Integer EF (WU)-mutator). Let t = (src,M, x, dst) ∈ UZ and Ft the energy
function defined as

• if x ≥ WU , then Ft is the energy function composed of the sole energy segment of
equation ein 7−→WU defined on [0,WU];

• if 0 > x > WU , then Ft is composed of two energy segments:

– an energy segment defined on [0,WU − x[of equation ein 7−→ ein + x,

– an energy segment defined on [WU − x,WU] of equation ein 7−→WU ;

• if x = 0, then Ft is composed of the sole energy segment of equation ein 7−→ ein defined
on [0,WU].

• if −WU < x < 0, then Ft is composed of two energy segments:

– a null energy segment defined on [0,−x[,
– an energy segment defined on [−x,WU] of equation ein 7−→ ein + x;

• if x ≤ −WU , then Ft is composed of the sole null energy segment defined on [0,WU];

Every energy segment that appears in the definition of Ft that is not the null energy segment
has a predecessor equal to the source state of t.

We then define the integer EF (WU)-mutator σEF (WU) as the function that maps t to a
new transition weighted with Ft of source state, acceptance sets and destination sets equal to
the ones in t.

σEF (WU) is well-defined, as it treats all possible cases for the weight of t ∈ UZ. Note that
σEF (WU) preserves the source / destination state and the colors information. The resulting tran-
sitions are elements of UEF (WU); some examples (where WU = 10) are provided in Figures 18 and
19.

By abuse of notation, if t is a transition weighted with the integer k, we also use σEF (WU)(t)
to refer to the weight of the transition that results from the application of the integer EF (WU)-
mutator, i.e. the energy function that is associated with k. This allows us to write, for example,
σEF (WU)(t)⊕ σEF (WU)(t

′), where t and t′ are arbitrary integer-weighted transitions, even though
σEF (WU)(t) and σEF (WU)(t

′) are not energy functions but transitions.

32

1

2

−3

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥
undef

1

Figure 18: Equivalent energy function for a transition going from 1 to 2 with weight -3.

4

1

6

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

4

4

Figure 19: Equivalent energy function for a transition going from 4 to 1 with weight 6.

As seen in the previous section, the ⊕ and ⊗ operators on an energy function generated by a
sequence of transitions T can be interpreted in WWAs as respectively the comparison of T with
another sequence of transitions, and the addition of a new transition that starts from the final
state reached by using T .

In Figure 20, to go from 1 to 3, we need to use the transition t from 1 to 2, then the transition
t′ from 2 to 3. Thus, to calculate the energy function associated with transitions from 1 to 3,
we need to calculate the energy function σEF (WU)(t) ⊗ σEF (WU)(t

′). Note that since ⊗ is not
commutative, the result energy function is different from σEF (WU)(t

′)⊗ σEF (WU)(t), which would
be the use of a transition weighted with 8 followed by the use of a transition weighted with −5.

In Figure 21, to go from 1 to 4, we have two choices:

• use the transition t12 from 1 to 2 weighted with −2 then the transition t24 from 2 to 4
weighted with 4 (path T2);

• or use the transition t13 from 1 to 3 weighted with −5 then the transition t34 from 3 to 4
weighted with 10 (path T3).

33

The energy functions associated with paths T2 and T3 can be calculated using ⊗:

σEF (WU)(T2) = σEF (WU)(t12)⊗ σEF (WU)(t24)

σEF (WU)(T3) = σEF (WU)(t13)⊗ σEF (WU)(t34)

We can then use ⊕ to calculate the energy function F associated with the optimal paths to use
when going from 1 to 4:

F = σEF (WU)(T2)⊕ σEF (WU)(T3)

1

2

3

−5

8

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥
undef

2

2

Figure 20: Energy function associated with transitions from 1 to 3.

1 2

3 4

−2

−5 4

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

⊥
undef

2

3

Figure 21: Energy function associated with transitions from 1 to 4.

We can also initially associate paths from a state to itself as the identity energy function, that
is the energy function with the sole energy segment of equation ein 7−→ ein defined on [0,WU]
with predecessor undef. In this case, we can understand this function as “no transition was taken”,
but in a more global scope, it is also understandable as “it is (energetically) better to stay at the
current state rather than use some transitions to loop back at this state”.

This finally allows us to explain why we introduced the notion of energy domain in Definition
1: when searching for energy feasible loops in a WWA, we may stumble upon a particular energy-
neutral loop, such as in Figure 22. This kind of loop, even though it does not change the attained
energy at a state, is better than staying at the state without using a loop.

34

1 2

3

−5

10

−5

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

⊥

undef

3

undef

Figure 22: An automaton with an energy-neutral loop symbolized by an energy point in the energy
function associated with the optimal energy path from 1 to 1. Here, WU = 10.

In this portion of automaton, there is an energy-feasible loop that always allows us to attain
a final energy of 5 if the initial energy is greater than 5. However, this also means we would lose
energy if the initial energy is strictly greater than 5. As such, the loop is only interesting if the
initial energy is equal to 5. This case cannot be represented in an energy function if we only allow
energy domains of the form [α, β[(eventually closed to the left if β = WU).

This finally allows us to demonstrate Theorem 27 presented in Section 3.3.

Proof. (Theorem 27)
Let F an energy function. If F is not an increasing energy function, this means that there

exists two consecutive energy segments f and f ′ of F , respectively associated with paths T1 and
T2 in the initial WWA, where the value of f ′ at the boundary x ∈ [0,WU] is strictly inferior to
the value of f if it was extended to x (as energy segments form a partition of [0,WU], f is not
defined at x, so we use the limit), i.e. f ′(x) < limt→x f(t).

This would mean that it is more efficient to use path T2 than path T1 when the initial energy
is x, which is a contradiction: the condition f ′(x) < limt→x f(t) means that it is possible to use
path T1 with an initial energy of x to attain a final energy of limt→x f(t). ■

Definition 31. Let A = (M, S, s0, T, α) ∈WWA(Z).
We can build a set of transitions T ′ equivalent to T by applying σEF (WU) to every element

of T:
T ′ = {σEF (WU)(t) | t ∈ T}

This set of transitions is, by definition, weighted in EF (WU). By abuse of notation, to
save space, we write T ′ = σEF (WU)(T) to designate the resulting transitions instead of the set
notation.

We define the mutation of automata weighted in Z to automata weighted in EF (WU),
written as mutEF (WU), as the function from WWA(Z) to WWA(EF (WU)) defined as

mutEF (WU) : A = (M, S, s0, T, α) 7−→ (M, S, s0, σEF (WU)(T), α)

The previous two operations can be visualized as the following:

35

UZ UEF (WU)

WWA(Z) WWA(EF (WU))

σEF (WU)

mutEF (WU)

Let’s not forget the original motivation for using WWAs weighted with energy functions, that
is to have an efficient algorithm for solving energy problems in co-Büchi automata: we can apply
the Floyd-Warshall algorithm to our newly defined automaton A′ = mutEF (WU)(A), as A′ is
still weighted with elements of a semiring.

4.2 ▷ Floyd-Warshall algorithm with energy functions
The Floyd-Warshall algorithm has already been explained in Algorithm 9 on standard co-

Büchi automata weighted with integers, but not yet on automata weighted with energy functions.
Moreover, as we only need to know if there exists one energy-positive loop in the automaton, we
may return a result early if we manage to find one.

Algorithm 11 presents the Floyd-Warshall algorithm adapted to an arbitrary semiring with
the additive operation ⊕ and the multiplicative operation ⊗. 0̄ designates the neutral element for
⊕ (in EF (WU), this is the null energy function composed of the sole energy segment of equation
ein 7−→ ⊥ defined on [0,WU] with predecessor undef), while 1̄ designates the neutral element for ⊗
(in EF (WU), this is the identity energy function composed of the sole energy segment of equation
ein 7−→ ein defined on [0,WU] with predecessor undef). Like the traditional Floyd-Warshall
algorithm, this algorithm returns a matrix of the “shortest distances” in the chosen semiring, which
is a square matrix of size the number of states of the automaton.

Algorithm 11: Floyd-Warshall algorithm for arbitrary semirings
Data: an energy function-weighted automaton A = (M, S, s0, T), a semiring (R,⊕,⊗)

with neutral elements 0̄ and 1̄ and the associated integer mutator σR, a
short-circuit function check

1 begin
2 n←− number of states of A
3 M ←− n× n matrix filled with 0̄
4 for T ∋ e from u to v with weight k do
5 M [u][v] ←− σR(T)

6 for s ∈ S do
7 M [s][s] ←− 1̄

8 for k ∈ [1, n] do
9 for i ∈ [1, n] do

10 for j ∈ [1, n] do
11 M [i][j] ←−M [i][j]⊕M [i][k]⊗M [k][j]
12 if check(M, i, j) then
13 return positively

14 return negatively

We add to the innermost loop of the Floyd-Warshall algorithm (Line 11 in Algorithm 9)
a short-circuiting function, which is a function that takes as arguments the matrix, a source state
src and a destination state dst, and that returns positively if the energy function in the matrix
from src to dst represents a positive loop. This function is useful when we don’t want to calculate
the full matrix and only want to determine if there is an energy-feasible loop in the automaton.

36

By definition of energy functions, we can check if there exists an energy segment which is
greater than 1̄: this is the role of the is_above_one class method, which is used if src = dst, i.e.
if the current energy function corresponds to a path from a state to itself.

5 ▷ Implementation of energy functions

5.1 ▷ Structure
We recall the address of the GitHub repository containing our implementations, which is

https://github.com/PhilippSchlehuberCaissier/wspot/tree/thay. This repository contains
the tests directory containing various test automata in HOA format (presented in [3]), whereas
the code directory contains the bulk of our implementations:

• *_benchmark*.py designate one-off scripts that are made for benchmarking various aspects
of our implementations: execution time, allocated memory. . .

• there are ipynb files, which are Jupyter notebooks that provide a visual interface for our
algorithms. For example, this allows us via the Spot library (that is, its Python bindings) to
visualize automata that are in the HOA format.

• energy.py is the implementation of energy-related classes;

• integer.py is an implementation of the tropical semiring used in classic applications of the
Floyd-Warshall algorithm on weighted directed graphs;

• ipython_utils.py are a set of functions targeted towards Jupyter and IPython sessions
that print debug information. These functions are controlled by a IPythonUtils object that
determines the quantity of information to be printed (textual information in IPython sessions,
graphical output in Jupyter notebooks); this class implements the Singleton pattern;

• *_builder.py are scripts containing classes designed to automatically build automata;

• semiring.py contains an abstract class describing a semiring with its associated integer
mutator;

• tests_energy.py uses the unittest Python library to test our implementations of various
semirings and their operations;

• WBA_FW.py is an implementation of the generalized Floyd-Warshall algorithm described
in Algorithm 11;

• WBA_solvers.py contains implementations of various energy problem solvers;

• WBA_utils.py functions as a switch that chooses the correct solver for a WWA depending
on the type of its acceptance condition (Büchi, co-Büchi, parity, etc.);

• other files are either the result of previous works, such as tchecker which is used in [8], or
utility files such as the Doxygen documentation generation scripts.

The solver for co-Büchi using the Floyd-Warshall algorithm and energy functions has also
been implemented in the WBA_solvers.py script. Energy functions and segments are implemented
in a separate file, energy.py.

To be able to use the Floyd-Warshall algorithm on weighted automata using other weight
types than integers, we use an abstract class representing a semiring equipped with its associated
integer mutator (defined in Definition 29) called transition_to_sr:

37

https://github.com/PhilippSchlehuberCaissier/wspot/tree/thay

Semiring

__add__(other: Semiring): Semiring
__mul__(other: Semiring): Semiring
transition_to_sr(e: edge, weight: int): Semiring
zero(): Semiring
one(): Semiring

To test our Floyd-Warshall algorithm implementation, we also use the Semiring abstract
class to implement the tropical semiring (the semiring of integers equipped with min as additive
operator and + as multiplicative operator) in the integer.py script.

Our implementation of energy functions in wspot revolves mainly around the EnergySegment
and EnergyFunction classes that are described below.

EnergySegment

lowerBound: int
upperBound: str
pred: int
a: int
b: int
is_zero: bool
is_above_one: bool
domain: (int, int)
image: (int, int)

__add__(other: EnergySegment): EnergyFunction
is_in_domain(x: int): bool
evaluate(x: int): int
restriction(low: int, upp: int): EnergySegment
zero(low: int, upp: int, pred: int?): EnergySegment
one(low: int, upp: int, pred: int?): EnergySegment
const(low: int, upp: int, pred: int?, k: int): EnergySegment
incr(low: int, upp: int, pred: int?, b: int): EnergySegment

The EnergyFunction class is a full implementation of the Semiring abstract class. It also
contains other utility functions such as the cleaning algorithm already presented in Algorithm 10.

However, we do not implement energy domains in this class and rather consider all energy
domains to be of the form [α, β[∈ [0,WU]. This may not make sense in the case an energy
segment’s domain is a point (an energy domain of the form [α, α]), but we can show that this does
not matter when searching energy feasible loops.

Indeed, when checking if an energy function corresponds to an energy-feasible loop with the
is_above_one method, we only check if there exists a segment that is above 1̄. To do so, we
only check for each segment f if its predecessor is not undef and if there exists an x ∈ dom(f)
so that f(x) ≤ x. Since energy segments that have a point as their energy domain respect this
condition, as seen in Figure 22, the is_above_one method will detect that this corresponds to an
energy-feasible loop.

In the following, we detail the implementation of the __add__ (⊕, Algorithm 12) and __mul__
(⊗, Algorithm 13) operators.

The additive operation between two energy functions uses segment_at_disc, a Python dictio-
nary which stores for both energy functions the (unique) segment of the function that is relevant
at each discontinuity, eliminating the need to use the get_segment method for each use of this
operator as the latter is in O(n). We suspect that this dictionary might grow exponentially in

38

Semiring

EnergyFunction

WU: int
ZERO: EnergySegment
ONE: EnergySegment
segments: EnergySegment[]
length: int

set_wu(wu: int): void
is_zero(): bool
is_above_one(): bool
is_in_domain(x: int): bool
get_segment(x: int): EnergySegment
evaluate(x: int): int
__add__(other: EnergyFunction): EnergyFunction
__mul__(other: EnergyFunction): EnergyFunction
transition_to_sr(e: edge, weight: int): EnergyFunction
discontinuities(f: EnergyFunction): int[]
zero(WU: int): EnergyFunction
one(WU: int): EnergyFunction
clean(f: EnergyFunction): EnergyFunction

size if the combined two energy functions have a high number of discontinuities, but we chose
this solution over a more traditional list structure storing which segments are valid between two
discontinuities (for example, segments f1 and g1 are used on δ1, segments f1 and g2 on δ2, etc.) for
the constant access time the hash set structure provides (calculating the hash of a discontinuity,
i.e. an integer, is in O(1)).

To reduce the total number of energy segments, we also reuse the cleaning algorithm already
seen in Algorithm 10.

The multiplicative operation is more straightforward, as we only need to map the cross function
over the list of segments of F .

We can calculate the complexity of these to operations to deduce the complexity of the modified
Floyd-Warshall algorithm. Let F,G two energy functions and D = |Disc(F,G)|; we can assume
that D = O(WU) since there cannot be more discontinuities than WU (one per integer in [0,WU])
in the integer case:

• for the ⊕ operation, we first need an intermediate function that returns an energy segment
given an energy function and an x ∈ [0,WU]. As we use a dichotomic approach for this, this
intermediate function is logarithmic in the number of segments. There may be as much as
WU segments in an energy function, giving us a complexity of O(log(WU)). We call this
intermediate function for every discontinuity in Disc(F,G), so the complexity of building the
segment_at_disc dictionary is O(WU log(WU)).

After building segment_at_disc, we iterate again over each discontinuity in Disc(F,G).
Getting the relevant energy segment given a discontinuity is in constant time, since access
in a Python dictionary is in constant time. The restriction of an energy segment is also in
constant time, but it creates a new energy segment. Finally, we use the ⊕ operator on energy
segments, which is in O(1) in our implementation.

Therefore, the complexity of the ⊕ operation on energy segments is equal to the complexity

39

Algorithm 12: Additive operation (⊕) on energy functions
Data: two energy functions F and G
Result: the energy function F ⊕G

1 begin
2 new_segs←− []
3 discs←− Disc(F,G)
4 segment_at_disc←− {F : {}, G : {}}
5 for d ∈ discs do
6 segment_at_disc[F][d]←− segment of F at d
7 segment_at_disc[G][d]←− segment of G at d

8 for i ∈ [0, discs.length− 2] do
9 lower ←− discs[i]

10 upper ←− discs[i+ 1]
11 seg1←− segment_at_disc[F][lower]
12 seg2←− segment_at_disc[G][lower]
13 restrict seg1 and seg2 to [lower, upper]
14 add the segments from seg1⊕ seg2 to new_segs

15 return the cleaned energy function generated by new_segs

Algorithm 13: Multiplicative operation (⊗) on two energy functions
Data: two energy functions F and G
Result: the energy function F ⊗G

1 begin
2 new_segs←− []
3 for seg ∈ F do
4 add the segments from seg ×G to new_segs

5 return the cleaned energy function generated by new_segs

of creating the segment_at_disc dictionary, that is O(WU log(WU)).

• for the ⊗ operation, we only need to know the complexity of the cross operator. In our im-
plementation of this operator, which appears in the energy.py script as a top-level function,
the worst-case complexity occurs if the energy segment f passed in argument is an increasing
energy segment. In either case, the final complexity of the ⊗ operator only depends on the
number of discontinuities of F , which is nevertheless O(WU).
In the cross operator, with an increasing energy segment f , we need to build the appropriate
{ξi}1≤i≤n defined in Definition 18. The number of new energy segments n depends on the
number of discontinuities of G that intersect Im(f), but can be expressed as O(WU). For
each one of these new energy segments, we need to get the equation and predecessor of
another energy segment in G: this operation, as seen in the ⊕ analysis, is in O(log(WU)).
Afterwards, we create a new energy segment, which is constant in time (but not in memory),
yielding us a total complexity of O(WU log(WU)).
Since F contains O(WU) energy segments, we deduct the final complexity of the ⊗ operator,
which is O(WU2 log(WU)).

• The cleaning algorithm (Algorithm 10) is called after every use of the ⊕ or ⊗ operator.
However, we can see that it only needs to iterate over the energy segments of the energy
function, yielding us a complexity of O(WU); we can ignore this complexity.

40

• Finally, in the modified Floyd-Warshall algorithm, we call both the ⊕ and the ⊗ operators
inside the three nested loops. As such, the final complexity of the algorithm is O(n3 ·
WU2 log(WU)) where n = |S| is the number of states of A.

5.2 ▷ Performance and optimization
We test the execution times of four co-Büchi energy problem solving algorithms: the naive algo-

rithm (Algorithm 6), the cycle storage algorithm (Algorithm 7), the algorithm using backtracking
(Algorithm 8), and the modified Floyd-Warshall algorithm using energy functions (Algorithm
11 with the EnergyFunction class).

We first present interesting automata that can be used to test these algorithms.
Figures 23 and 24 present the nested loops automaton, composed of n ≥ 1 loops: a standard

DFS would have to traverse n − 1 energy negative loops with an increasing number of states (if
k ∈ [1, n], the k-th loop will contain k states) before finding an energy positive loop. Thus, an
algorithm based on a DFS, such as the cycle storage one, would need to traverse every state.
Regardless of the number of loops in a nested loops automaton, we always consider WU = 10
in such automata. We also use a variant of this automaton, called the non-feasible nested loops
automaton, which replaces the last positive loop by a negative loop (the last transition has a weight
of −1 instead of 1): in such an automaton, there is no longer an energy-feasible loop.

Figures 25 and 26 present the “stairs” automaton, composed of n ≥ 1 loops. For k ∈ [1, n], the
k-th loop is composed of a “barrier” that is only passable if the energy is greater than k. In that
case, the accumulated energy is maxed to WU and then reduced to k. Thus, it is interesting to
use the loop k only if the accumulated energy is equal to k (otherwise, either the energy is lesser
than k and the loop is unusable, or it is greater than k but there exist other loops that will result
in a higher final energy).

When using energy functions and the Floyd-Warshall algorithm without the short-circuit
checking function to solve an energy problem on a “stairs” automaton, the energy function from 1
to itself will contain n constant energy segments (thus the “stairs” denomination). However, for an
algorithm based on a DFS, measured times should be comparatively low, since every loop in such
an automaton are energy-feasible.

0 1

-5•
10

0

n− 1 loops
of increasing length

weighted with 0

-10

0

1

Figure 23: General form of the nested loops automaton with n loops.

41

0 1

2

3 4

5

6

7

8

9 10

11

-5•
10

-1

0-1

0

0

-10

0 0

-10

0 0 0

1

Figure 24: Automaton with five nested loops.

0 1

2

3

4

k ∈ [1, n]-th loop

-5•
0

0

0
n

−n+ 1
−k + 1 k − 1

n−n− k

Figure 25: General form of the “stairs” automaton with n loops.

42

0 1

2

3

4

5

67

8

9

10

-5•
0

0

0
3

−2
−1 1

3−1

−2

2
3

0

Figure 26: “Stairs” automaton with three loops.

The circling automaton (an idea of Philipp), not depicted here due to its complexity, is also
another type of WWA which contains several nested loops with varying depth levels, but no energy-
feasible loop: the goal of this type of automaton is to maximize the number of loops that need to
be examined. We will not describe in detail these automata, but the idea for circling automata
is that they have a nesting level of N > 3, an incremental energy of NM ≥ N , and a recursive
construction based on nested modules of N states.

These types of co-Büchi automata, which can be arbitrarily big, allow us to test our algorithms
by varying their number of loops.

To build nested loops automata, we use the NestedLoopsBuilder class, which is implemented
in the nested_loops_builder.py script, that builds the associated nested loops automaton given
a number of loops. This script also contains the AltNestedLoopsBuilder class which produces
nested loops automata without an energy-feasible path. Similar builders exist for stairs automata
(in the stairs_builder.py script) and for the circling automaton (in the devilCircles.py
script).

Execution times presented in Figure 27 were measured using the time Python library. We use
the algo_benchmark.py script as a global platform for execution time measurements, as well as
the usual matplotlib Python library for displaying our results.

43

Figure 27: Execution times for various co-Büchi solving techniques in (top to bottom, left to right):
the nested loops automaton, the non-feasible nested loops automaton, the “stairs” automaton and
the circling automaton.

We notice that for every time of automaton except the circling one, our Floyd-Warshall
based approach is consistently slower than the other three algorithms.

We also notice that our cycle storage based approach is the fastest on both types of nested loops
automata as well as stairs automata, being only outperformed by the backtracking-based algorithm
when solving co-Büchi problems on circling automata. The naive algorithm, as unoptimized as
it may have looked when being presented in Algorithm 6, actually has similar performances to
the cycle storage and backtracking algorithms on energy-feasible nested loops automata and stairs
automata, but underperforms on energy-unfeasible nested loops automata and circling automata,
being almost as slow as the modified Floyd-Warshall algorithm on the latter.

To find potential bottlenecks in our implementation of energy functions and their use with the
Floyd-Warshall algorithm, we use the cProfile Python profiler [22]: implemented in C, thus
minimizing its overhead; this profiler allows us to know what are the slowest functions or the most
called ones. We also use the gprof2dot utility tool [9] that converts the output of this profiler
(raw text) into a dot graph. The results of the profiler when applied to the use of the Floyd-
Warshall algorithm to find energy-feasible paths on a nested loops automaton is illustrated in
Figure 28.

In this figure, we can see that the ⊕ operation on energy functions is the operation that takes
the most time, representing 80.05% of the total execution time of the solver, while the ⊗ operation

44

Figure 28: Graphical representation of the cProfile profiler run on the Floyd-Warshall based
co-Büchi solver on the nested loops automaton with 11 loops.

only represents 12.53% of the total execution time. We can also see that the three sub-functions
called by these two operators that take the most time are the ⊕ operation on energy segments (in
constant time but with O(1) new energy segments being created), the cleaning function (linear in
the number of segments of the original energy function, but it also needs to create a new energy
function), and the get_segment function that returns an energy segment from an energy function
F given an x ∈ [0,WU] which is logarithmic in the number of segments of F , but can be considered
linear in this example as the number of energy segments is low (there are many transitions weighted
with 0, these transitions do not change the number of energy segments of an energy function when
the ⊗ operator is used).

To improve the performance of the Floyd-Warshall based co-Büchi solver, we have used
multiple approaches:

• as mentioned in the modified Floyd-Warshall algorithm complexity analysis, we used a
dichotomic approach to get an energy segment of a function given an x ∈ [0,WU];

• we have tried replacing the segment_at_disc dictionary generated at each call of the ⊕ oper-
ator on energy functions by a more general equivalent dictionary directly stored in instances
of EnergyFunctions updated each time this energy function is used in the ⊕ operation. How-
ever, we figured out that since a new energy function was created for each iteration of the
inner loop of the algorithm, this would represent a waste of memory space and would only be
useful if energy functions were not recreated or replaced as often in the Floyd-Warshall
matrix;

• to check if the number of segments played a significant role in the complexity of the algorithm,
we made a benchmark script (segment_benchmark_legacy.py) that counts for each energy
function of the result matrix its number of segments. However, this didn’t really matter in
the end since even in the unfeasible nested loops automaton where most energy functions
are identity energy functions (it is not worth using any loop in the automaton since they are
all negative), execution times are still an order of magnitude higher than the other co-Büchi
solving algorithms;

• we also tried to determine if the allocated memory during the problem solving was ab-
normally higher than other algorithms with the memory_benchmark_new.py script (mainly
using nested loop automata), but we dropped this idea after noticing that differences were
not significant between algorithms (around 120 MB allocated for all four algorithms including
Python overhead). To begin to notice differences in allocated memory that are superior to
the Python overhead, we may need large automata with at least thousands of states (more
than 106 energy functions in the Floyd-Warshall result matrix); with our current imple-
mentation, co-Büchi problems cannot be solved in a reasonable amount of time in such large
automata;

• initially, the WU was stored in a file in /tmp and updated only when the OmegaEnergy
function, in WBA_utils.py, was called. This would have generated a high number of I/Os,

45

since access to the WU is needed at least every time the ⊗ operator is called (i.e. at every
iteration of the inner loop of the Floyd-Warshall algorithm). This was changed to use
class variables and a set_wup static method, which updates the WU as well as the neutral
energy functions for ⊕ and ⊗, instead.

6 ▷ Perspectives

For the time being, we are still in the process of finding efficient algorithms to solve WWAs
using other types of acceptance conditions such as Streett (α =

∧k∈N∗

i=0 Fin(2i)∨ Inf(2i+1)). The
objective would be to be able to solve energy problems in Emerson-Lei automata, i.e. to solve
energy problems with arbitrary acceptance conditions.

We saw that the Floyd-Warshall based co-Büchi solver underperforms compared to our
other approaches. However, this algorithm has other applications: for example, in the case of the
Büchi case, it would remove the time complexity dependency on the number of back-edges, the
Floyd-Warshall approach having a fixed complexity of O(n3 ·WU2 log(WU)), where n = |S| is
the number of states of the automaton. This can be useful if the number of back-edges in a WBA
is high, or more generally in WBAs where there are a high number of colored transitions.

There are still cases where the modified Floyd-Warshall algorithm needs further improve-
ments. In Figure 29, we can see that there are two energy-feasible loops (and by extension, lassos
with no prefixes), one using the transition from 0 to 1 then from 1 to 2 (path T1) and one using
directly the transition from 0 to 2 (path T2). However, when running the current version of the
modified Floyd-Warshall algorithm, we would find an optimal energy path from 2 to itself that
uses path T2, which does not respect the Büchi condition, and path T1 would be discarded even
though it satisfies the acceptance condition.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥
undef

0

0

0 1

23

1•

0
2

0

−1

Figure 29: Our modified Floyd-Warshall algorithm applied to a Büchi automaton. The energy
function from 2 to itself is depicted.

Furthermore, in the case we found an energy-feasible loop in an automaton, we would still need
to determine if this loop is accessible, such as in Figure 30 where there exists an energy-feasible
accepting loop ((1 → 2 → 1)ω) that is not accessible for WU = 10. We can however solve the
accessibility problem by pruning parts of the automaton that are not accessible from the initial
state with the initial credit, for example by using a DFS.

46

0 1 2
-11

-1• 0

1

Figure 30: The Büchi accepting loop of this automaton is not accessible due to the transition
between 0 and 1.

6.1 ▷ Towards a generalization of mutEF (WU)?
A new question arises with the definition of mutEF (WU): is it possible to extend the definition

of an integer mutator to any semiring? Put otherwise, is it possible to convert an automaton
weighted with an arbitrary semiring R into another equivalent automaton weighted with another
arbitrary semiring R′, i.e. have an automaton mutator from WWA(R) to WWA(R′)? This would
allow solving co-Büchi energy problems in automata with weights that are not integers (such as
automata with weights in R) but also find other exotic semirings (to be defined. . .) that could
have interesting applications in WWAs.

We can already see that σEF (WU) has no inverse: there exist energy functions that cannot be
associated to a single transition with an integer weight, such as the one illustrated in Figure 31.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

⊥

1

2

2

Figure 31: An energy function that cannot be interpreted as a single integer-weighted transition.

47

▷ References

[1] E. Allen Emerson and C.-L. Lei, “Modalities for model checking: Branching time logic strikes
back,” Science of Computer Programming, vol. 8, no. 3, pp. 275–306, 1987, issn: 0167-6423.
doi: https://doi.org/10.1016/0167-6423(87)90036-0. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0167642387900360.

[2] E. W. Allender, “On the number of cycles possible in digraphs with large girth,” Discrete
Applied Mathematics, vol. 10, no. 3, pp. 211–225, 1985, issn: 0166-218X. doi: https://doi.
org/10.1016/0166-218X(85)90044-7. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0166218X85900447.

[3] T. Babiak et al., “The hanoi omega-automata format,” in Computer Aided Verification, D.
Kroening and C. S. Păsăreanu, Eds., Cham: Springer International Publishing, 2015, pp. 479–
486, isbn: 978-3-319-21690-4.

[4] P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey, “Timed automata with observers
under energy constraints,” in Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, ser. HSCC ’10, Stockholm, Sweden: Association
for Computing Machinery, 2010, pp. 61–70, isbn: 9781605589558. doi: 10.1145/1755952.
1755963. [Online]. Available: https://doi.org/10.1145/1755952.1755963.

[5] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba, “Infinite Runs in Weighted
Timed Automata with Energy Constraints,” in Lecture Notes in Computer Science, Cassez,
Franck, Jard, and Claude, Eds., ser. Lecture Notes in Computer Science, vol. 5215, Saint-
Malo, France: Springer, 2008, pp. 33–47. doi: 10.1007/978-3-540-85778-5_4. [Online].
Available: https://hal.science/hal-01194594.

[6] V. Capraro et al., “The impact of generative artificial intelligence on socioeconomic inequal-
ities and policy making,” PNAS Nexus, vol. 3, no. 6, pgae191, Jun. 2024. doi: 10.1093/
pnasnexus/pgae191.

[7] A. Casares, “Transition-based vs stated-based acceptance for automata over infinite words,”
arXiv preprint arXiv:2508.15402, 2025.

[8] S. Dziadek, U. Fahrenberg, and P. Schlehuber, “ω-regular energy problems,” Formal Aspects
of Computing, 2022.

[9] GitHub - jrfonseca/gprof2dot at main, [Online; accessed 29. Sep. 2025], Sep. 2025. [Online].
Available: https://github.com/jrfonseca/gprof2dot.

[10] M. Hosseini, P. Gao, and C. Vivas-Valencia, “A social-environmental impact perspective of
generative artificial intelligence,” Environmental Science and Ecotechnology, vol. 23, p. 100 520,
2025, issn: 2666-4984. doi: https://doi.org/10.1016/j.ese.2024.100520. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2666498424001340.

[11] M. Mohri, “Semiring frameworks and algorithms for shortest-distance problems,” J. Autom.
Lang. Comb., vol. 7, no. 3, pp. 321–350, Jan. 2002, issn: 1430-189X.

[12] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers in speech recognition,”
Computer Speech & Language, vol. 16, no. 1, pp. 69–88, 2002.

[13] A. W. Mostowski, “Regular expressions for infinite trees and a standard form of automata,”
in Computation Theory, A. Skowron, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
1985, pp. 157–168, isbn: 978-3-540-39748-9.

[14] D. E. Muller, “Infinite sequences and finite machines,” in Proceedings of the Fourth Annual
Symposium on Switching Circuit Theory and Logical Design (swct 1963), 1963, pp. 3–16.
doi: 10.1109/SWCT.1963.8.

[15] Pédagothèque numérique: Les jeudis de l’IA Gen, [Online; accessed 30. Sep. 2025], Sep. 2025.
[Online]. Available: https://pedagotheque.imt.fr/mod/page/view.php?id=26571.

48

https://doi.org/https://doi.org/10.1016/0167-6423(87)90036-0
https://www.sciencedirect.com/science/article/pii/0167642387900360
https://www.sciencedirect.com/science/article/pii/0167642387900360
https://doi.org/https://doi.org/10.1016/0166-218X(85)90044-7
https://doi.org/https://doi.org/10.1016/0166-218X(85)90044-7
https://www.sciencedirect.com/science/article/pii/0166218X85900447
https://www.sciencedirect.com/science/article/pii/0166218X85900447
https://doi.org/10.1145/1755952.1755963
https://doi.org/10.1145/1755952.1755963
https://doi.org/10.1145/1755952.1755963
https://doi.org/10.1007/978-3-540-85778-5_4
https://hal.science/hal-01194594
https://doi.org/10.1093/pnasnexus/pgae191
https://doi.org/10.1093/pnasnexus/pgae191
https://github.com/jrfonseca/gprof2dot
https://doi.org/https://doi.org/10.1016/j.ese.2024.100520
https://www.sciencedirect.com/science/article/pii/S2666498424001340
https://doi.org/10.1109/SWCT.1963.8
https://pedagotheque.imt.fr/mod/page/view.php?id=26571

[16] PhilippSchlehuberCaissier, GitHub - PhilippSchlehuberCaissier/wspot at sven/loop_bugfix,
en. Accessed: Jun. 16, 2025. [Online]. Available: https://github.com/PhilippSchlehuberCaissier/
wspot.

[17] Plan Stratégique de la Transition Écologique et Sociétale, [Online; accessed 1. Oct. 2025],
Jun. 2024. [Online]. Available: https://www.telecom-sudparis.eu/plan-strategique-
transition-ecologique-et-societale.

[18] Rapport de mission d’audit - institut mines-télécom, télécom sudparis, [Online; accessed 29.
Sep. 2025], 2025. [Online]. Available: https://www.cti- commission.fr/wp- content/
uploads/2025/04/telecomsudParis_rmad_202502.pdf.

[19] F. Renkin, A. Duret-Lutz, and A. Pommellet, “Practical ”Paritizing” of Emerson-Lei Au-
tomata,” in Proceedings of the 18th International Symposium on Automated Technology for
Verification and Analysis (ATVA’20), ser. Proceedings of the 18th International Symposium
on Automated Technology for Verification and Analysis (ATVA’20), vol. 12302, Hanoi, Viet-
nam: Springer, Oct. 2020, pp. 127–143. doi: 10.1007/978-3-030-59152-6_7. [Online].
Available: https://hal.science/hal-02891970.

[20] J. Richard Büchi, “Symposium on decision problems: On a decision method in restricted sec-
ond order arithmetic,” in Logic, Methodology and Philosophy of Science, ser. Studies in Logic
and the Foundations of Mathematics, E. Nagel, P. Suppes, and A. Tarski, Eds., vol. 44, El-
sevier, 1966, pp. 1–11. doi: https://doi.org/10.1016/S0049-237X(09)70564-6. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0049237X09705646.

[21] Spot: A platform for LTL and ω-automata manipulation. Accessed: Jun. 16, 2025. [Online].
Available: https://spot.lre.epita.fr/.

[22] The Python Profilers, [Online; accessed 29. Sep. 2025], Sep. 2025. [Online]. Available: https:
//docs.python.org/3/library/profile.html.

49

https://github.com/PhilippSchlehuberCaissier/wspot
https://github.com/PhilippSchlehuberCaissier/wspot
https://www.telecom-sudparis.eu/plan-strategique-transition-ecologique-et-societale
https://www.telecom-sudparis.eu/plan-strategique-transition-ecologique-et-societale
https://www.cti-commission.fr/wp-content/uploads/2025/04/telecomsudParis_rmad_202502.pdf
https://www.cti-commission.fr/wp-content/uploads/2025/04/telecomsudParis_rmad_202502.pdf
https://doi.org/10.1007/978-3-030-59152-6_7
https://hal.science/hal-02891970
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70564-6
https://www.sciencedirect.com/science/article/pii/S0049237X09705646
https://spot.lre.epita.fr/
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html

▷ Appendices

A ▷ About Télécom SudParis

Télécom SudParis (TSP, former Télécom INT) [18], is an engineering school that is also part of
the Institut Polytechnique de Paris (IP Paris) alongside École Polytechnique, ENSTA Paris, École
des Ponts et Chaussées, ENSAE and Télécom Paris.

This public engineering school is part of the Institut Mines-Télécom (IMT), a public institution
under the supervision of the Ministère de l’Économie, des Finances et de la Souveraineté industrielle
et numérique.

Télécom SudParis’ activities are split between two main sites:

• Évry-Courcouronnes, the historical site which also houses the Institut Mines-Télécom Busi-
ness School;

• Palaiseau (Saclay), on the campus of the Institut polytechnique de Paris, along with the
general management of the Institut Mines-Télécom and Télécom Paris, and nearby the other
school members of IP Paris.

Télécom SudParis is also equipped with a research lab specialized in Information and Commu-
nication Technologies (ICTs).

B ▷ Sustainable and Socially Responsible Development (DD&RS)

B.1 ▷ Green Transition and Social Transition Master Plan

According to Télécom SudParis’ website [17], the school aims to excel in digital engineering
while integrating sustainable development and social responsibility principles in the institution’s
identity. To attain this level of excellence, five main strategic objectives are presented:

• integrating an environmental and social dimension to curriculums;

• actively promoting efforts in research and innovation oriented towards digital sustainability;

• promoting social and gender diversity by setting up inclusion and support programs;

• building partnerships with actors committed to sustainability;

• reducing the campus’ carbon footprint through transportation, energy consumption and dig-
ital use policies.

B.2 ▷ A heavy reliance on AI technologies

Télécom SudParis and the Institut Mines-Télécom organize a monthly online seminar about
the use of Generative AI (in the following, GenAI) for education purposes, called “Les jeudis de
l’IAGen” (GenAI Thursdays) [15]. These talks cover a variety of topics such as the use of ChatGPT
to generate course outlines or discussions on how students tend to use GenAI in their studies. They
also present a curated list of GenAI tools for various usages: converting a textual prompt to an
image or a video, summarizing the contents of a resource, or generating presentation slides.

However, this seminar fails to tackle GenAI’s environmental and social impacts. According to
[10], the high environmental impact of GenAI technologies mainly comes from two contributors:

50

• the hardware needed to power GenAI models: GPU manufacturing, which needs high elec-
tricity, water and non-recyclable rare metals inputs (as an example, as much as 25 % of the
electrical consumption of Taichung City (3 million inhabitants) in Taiwan); as well as data
center building and upkeep. The social repercussions of GenAI are also presented, both at
the data center level (terrain and ressource usage that do not cause any benefit for local
communities, a cited example is xAI’s latest data center in Memphis, Tennessee).

• the training and development of GenAI models: quantitatively, it is estimated that the
training of OpenAI’s GPT-3 model consumes nearly 1300 MWh of electricity, the equivalent
of 300 French households1, and emits about 550 tons of CO2, the equivalent of 312 round
trips from Paris to New York2. The paper also notes that there exist inequalities in GenAI
accessibility depending on the users’ income, and that these models tend to favor English-
speaking users at the expense of other languages.

Capraro et al., in [6], address the question of the social impacts of GenAI in four domains
(information, work, education, and healthcare): they note that while these tools can provide a
better access to information or be used to assist humans in critical contexts such as in medical image
analysis, they tend to be used as a replacement for human workforce instead of a complementary
tool to assist humans.

The authors are concerned that these tools could form the basis for a “surveillance capitalist”
system, by exploiting GenAI’s widespread usage to collect information about its users (possibly in
violation of privacy regulations such as the GDPR in the European Union, the Loi 25 in Québec,
or the California Consumer Privacy Act (CCPA) in the United States), but also that they could
worsen the digital divide that already appeared at the time the personal computer was introduced.

1ENGIE website
2Impact CO2, ADEME

51

Prévision météorologique à court terme par des
Réseaux d’Automates Stochastiques

Douglas Lima de Bem1,2, Vagner Anabor2, Luiz Angelo Steffenel1, and Leonardo Brenner1

1Université de Reims Champagne-Ardenne - Laboratoire d’Informatique en Calcul Intensif et Image
pour la Simulation (LICIIS), Reims 51100, France

2Federal University of Santa Maria - Dep of Physics (UFSM), Santa Maria 97105-900, Brazil

Au cours des dernières décennies, la météorologie a consacré des efforts significatifs à
l’accélération du traitement des Modèles Numériques de Prévision du Temps (NWP). Cet accent
sur l’efficacité computationnelle est devenu crucial face à la demande de prévisions plus rapi-
des et plus précises. Toutefois, même avec des techniques modernes d’accélération, les NWP
continuent d’exiger des ressources informatiques élevées et, dans des contextes opérationnels
contraints en temps et en infrastructure, peuvent devenir difficiles à déployer. Outre les lim-
itations de coût et de passage à l’échelle, persistent des contraintes inhérentes à la résolution
spatiale/temporelle, ainsi que des limites théoriques liées à la sensibilité aux conditions initiales
et à la théorie du chaos, ce qui peut restreindre leur usage dans certaines applications.

Dans ce contexte, des approches statistiques à faible coût computationnel se sont révélées
efficaces pour des prévisions rapides, en particulier à très court terme et pour des variables
catégorielles. Parmi elles se distinguent les modèles développés à base des Chaı̂nes de Markov
(CM) et des Chaı̂nes de Markov Cachés (CMC). Ces modèles sont déjà bien établis pour la
précipitation journalière/horaire, capables de représenter des régimes sec/humide et ainsi que
des statistiques des événements extrêmes. Malgré leur grande représentativité, les CM devi-
ennent impraticables lorsque les modèles deviennent complexes. Des formalismes comme les
Réseaux d’Automates Stochastiques (RAS) ou les Réseaux de Petri Stochastiques (RdPS) vi-
ennent palier à ce problème en proposant une modélisation à plus haute avec une équivalence
aux CM. Dans ce travail, nous proposons un modèle RAS pour générer des prévisions proba-
bilistes des états du ciel à court terme. Notre objectif est de développer un modèle générique qui
privilégie un faible coût de résolution sans trop dégrader la précision en relation à des modèles
NWP. Nous validons notre modèle en l’appliquant aux données météorologiques à la ville de
Reims.

Notre méthode consiste à, dans un premier temps, établir un diagnostic probabiliste minimal
de la nébulosité pour la génération des matrices de transition. Afin de réduire l’effet du cycle
diurne et de garantir la comparabilité entre jours, nous fixons une seule heure d’observation, 10
h (heure locale), à la station de Reims-Prunay. La nébulosité, enregistrée en octas (N), a été
mappée sur quatre états mutuellement exclusifs et opérationnellement utiles :

État(N) =


Ensoleille, N1 = 0,

Peu nuageux, N1 ∈ {1, 2},
Partiallement nuageux, N1 ∈ {3, 4, 5},
Couvert, N1 ∈ {6, 7, 8}.

Cela permet la construction de la matrice P (St|St−1), qui synthétise la persistance et aide à
indiquer la transition la plus probable d’un jour à l’autre. Avec le même découpage temporel,

1

nous avons stratifié la température à 2 mètres du sol (T), l’humidité relative à 2 mètres (U) et
la pression à la station (P) en classes régulières de pas et calculé, pour chaque classe, les prob-
abilités de transition entre valeurs. Ces matrices jouent un rôle important puisqu’elles offrent
une lecture météorologique du comportement des variables et mettent en évidence des environ-
nements favorables à chacun des états de nébulosité, étant ensuite utilisées dans le RAS comme
conditionnants des règles locales de transition. Le choix de classes régulières s’explique par
le fait que, plus la matrice de transition est grande, plus le nombre d’états croı̂t de manière
exponentielle, rendant le processus de prévision plus coûteux, en plus d’augmenter le risque
de cellules faiblement peuplées et donc l’incertitude des estimations. Afin d’assurer la validité
temporelle, les paramètres sont ajustés du 01/01/2010 au 31/12/2023, réservant la période suiv-
ante à un contrôle de précision simple en une seule étape.

À partir des matrices de probabilités de transition, nous définissons un RAS qui nous per-
met de calculer les probabilités, à court terme, de l’état du ciel. Ces modèles RAS sont com-
posés de quatre automates (T, U, P,N). Les automates U, T et P représentent, respectivement,
l’humidité, la température et la pression atmosphérique tandis que l’automate N représente
les états du ciel. Les transitions d’un état à l’autre dans ces automates décrivent les proba-
bilités de transitions pour le jour suivant. Les automates T , U e P évoluent selon leurs pro-
pres matrices de transition obtenues à partir de données statistiques, tandis que l’automate
de nébulosité N ∈ {Sunny, Few Clouds, Partly Cloudy,Cloudy} transite via une combinaison
pondérée entreT, U, P et P (St | St−1):

PNo→d α wU U + wP P + wT T + ws Sro→d (1)

À partir d’un état initial (température, humidité, pression et nébulosité) dans un jour j,
nous calculons par la méthode d’uniformisation les probabilités pour j + 1. Les probabilités
les plus élevées représentent les prévisions pour le jour suivant. Les résultats obtenus avec le
modèle indiquent une exactitude de 40,98% pour la prévision de l’état du ciel au jour suivant,
performance en-deçà des attentes, mais cohérente étant donné qu’il s’agit d’un modèle purement
statistique ne tenant pas compte des équations physiques de l’atmosphère.

Sunny
Few Clouds

Partly Cloudy
Cloudy

Predicted

Su
nn

y
Fe

w
 C

lo
ud

s
Pa

rtl
y

C
lo

ud
y

C
lo

ud
y

O
bs

er
ve

d

55
(57.3%)

11
(11.5%)

8
(8.3%)

22
(22.9%)

15
(30.0%)

14
(28.0%)

9
(18.0%)

12
(24.0%)

10
(31.2%)

9
(28.1%)

6
(18.8%)

7
(21.9%)

16
(24.2%)

16
(24.2%)

9
(13.6%)

25
(37.9%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

Figure 1: Matrice de classification entre les états observés et prédits de nébulosité. Les valeurs
absolues et en pourcentage indiquent, pour chaque cellule, la fréquence relative des succès
(diagonale principale) et des erreurs de classification.

L’analyse de la matrice de confusion, observée dans la figure 1, montre une meilleure ha-
bileté dans les régimes extrêmes, avec rétention de Ensoleillé = 57,3% et Couvert = 37,9%,

2

alors que les classes intermédiaires (Peu nuageux = 28,0% et Partiellement nuageux = 18,8%)
concentrent l’essentiel des confusions. Cela peut s’expliquer par la manière dont la séparation
des états a été effectuée : n’étant pas une mesure directe mais une inférence d’états, elle peut
propager une partie de l’erreur au fil des résultats. Pour les variables continues, on observe de
bonnes représentations surtout pour la température et la pression, tandis que l’humidité relative
présente la moins bonne représentation, avec des valeurs de corrélation inférieures à 70%.

Variable MAE RMSE Viés r Exactitude ±5
T 2,51 °C 3,25 °C −0,05 °C 0,90 88,9%
P 4,07 hPa 5,48 hPa −0,57 hPa 0,75 70,9%
U 8,17 % 10,17 % +1,97% 0,65 36,9%

Dans l’ensemble, ces résultats démontrent que le modèle capture la persistance atmosphérique
et les voies dominantes de transition avec un coût computationnel minimal, fournissant des
probabilités opérationnelles à court terme utiles pour la communication et l’aide à la décision.
Les perspectives futures incluent une meilleure discrimination des classes intermédiaires et un
réajustement des poids environnementaux dans la combinaison pondérée, afin d’exploiter plus
finement la sensibilité à la pression et de réduire le bruit lié à l’humidité, sans compromettre
la rapidité d’exécution. Enfin, une comparaison systématique avec les modèles numériques
de référence, GFS (modèle global fournissant des prévisions toutes les trois heures) et WRF
(modèle régional à plus haute résolution pour les phénomènes locaux), constitue une étape es-
sentielle pour évaluer la cohérence physique et la valeur opérationnelle du modèle proposé.

3

	1 Introduction
	2 Methodological background
	3 Formal Model Verification
	Introduction
	Objectives and Methodology
	Comparative Analysis & Findings
	Conclusion & Perspectives
	Introduction
	Solving for Büchi, parity and others
	Büchi automata and parity energy problems
	Rabin condition
	 condition (monitor)

	Co-Büchi -automata
	A first algorithm
	Refinements towards an optimized algorithm
	Energy functions

	Application of energy functions to energy problems
	Mutators
	Floyd-Warshall algorithm with energy functions

	Implementation of energy functions
	Structure
	Performance and optimization

	Perspectives
	Towards a generalization of mutEF(WU)?

	Appendices
	About Télécom SudParis
	Sustainable and Socially Responsible Development (DD&RS)
	Green Transition and Social Transition Master Plan
	A heavy reliance on AI technologies

