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Motivation for TIMED DISCRETE EVENT SYSTEMS
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For some systems, successive events may be separated by long periods of time
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As for other systems, successive events may occur more or less simultaneously
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Time is critical in many domains:
services, communication networks,
manufacturing, robotics ...
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2. Modeling timed discrete event systems with automata
Outline Timed automata
Tick automata
Automata with time interval (ATI)
Clock Interval Automata (CIA)
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Digital clock without enforced reset
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A DC without reset measures the « natural » time

Xu et al. 2010; Xu et al. 2011
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Digital clock with possibility of enforced reset
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Clock conditions to

2.1 Timed automata (TA) execute transitions

Logical event

« Time is continuous \ /

e2,0lin[1, 3)
0l1:=0,02:=0

* One or more clocks

e Various clock resetting options

* Events occur at any time that satisfy
the clock constraints 00 =

* Time semantics is defined by the
clock constraints

T i o [oonan st

el, ol in [0, 2
ol :=0 $

e2,02in[1, 2)
02:=0

02<?2

(1,2) ol [0,2) RLH2 / Rl riir S
04 < T
(1,3) e2 02 [1, 2) H1, R2 Clock conditi
Resetting ock conditions
3,2 el 02 0,1 R1, H2 :
EZ 1; ) ) {1 3; — options to stay in states
, e 0 , ’
Time specifications Alur et al., 1994
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Logical event Clock values (01, 02)

2.2 Tick automata (Tick A )
( ) \ Associated to el, e2
* Time is discrete modeled by the tick events el /
e Events occur at specific time instants @
* One clock is associated to each event @ ® ®
* Each event occurrence resets the el e2
corresponding clock ® @ ®
* Time semantics is strong el o2
el

The occurrence of any / ® @ & @
el

event resets its clock
e2
) Clock
el ol {1} R1

e2 02 {2, 3} R2

Time specifications

Brandin et al., 1994
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2.3 Automata with Time Intervals (ATI) Logical event Clock conditions to
. _ \ execute transitions

* Time is continuous /

* Single clock e2,0in[1, 3)

e Various clock resetting options 0:=0

e Events occur within specific time

intervals
* Time semantics is defined by the
clock constraints

T i o oonan e

el, oin [0, 1)
(1,2) o) [0, 2) H o<1
(1,3) e2 o [1, 2) R Clock reset Time semantics specifies
(3,2) el 0 [0, 1) H the maximal time to
(2,1) 02 5 1, 3) R stay in states

Li et al., 2021; Gao et al., 2020;

Time specifications
Lefebvre et al. 2023
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Automata with Time Interval (ATI)

Definition : An Automaton with Time Intervals (ATI)
isa 7-tuple A=(X, E, o, I, RC, A, TS, x,) where

e2,0in[1, 3) o
o0:=0

el, oin [0, 2)
—>

0:=0

el,oin [0, 1)

e2,0in[1, 2) o0<2 ,

X is a finite set of states
E is a finite set of events
o is a clock
| is a set of time intervals of the form [a, b)
RC ={R, H} is a set of resetting options
H = hold on
R=resetto0
A X x ExIxRCxXisatimed transition relation
TS is the time semantics defined by

e W :weak
e M : mixed or intermediate
* S:strong

e Additional clock constraints
X, is the initial state
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Comment 1 about the time semantics

In the strong time semantics (TS=S), when any of the activated transitions reaches the
upper bound of its firing interval, then the transition must fire. Note that with strong TS
some transitions may never fire and consequently some states may never be reached

In the mixed (or intermediate) time semantics (TS= M), one of the activated transitions
at each state should fire within its time interval. This TS makes particular sense for
timed fault patterns

In the weak time semantics (TS= W), an activated transition can fire within its firing
interval. If, in a given state, no activated transition fires within its time interval, then the

system stays eternally at this state
el, [1,2) @ el, [1,2) @ el, [1,2) @
e2,12,4) @ €2, [2,4) @ €2, [2.4) @

TS =5 TS =M TS =W

maximal sojourn timeinx1: t . (x1) =2 TUs (x1) =4TUs  t,,[(x1) =+

max Tmax
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2.4 Clock interval automata (CIA) Logical event \
* Time is continuous

* Single clock

e Various clock resetting options

* Events occur within specific time intervals

 Time semantics is defined by the clock

constraints

Tranition | Event | Coc | Domain | Reset

(1,2) el 0 [0, 2) H
(1,3) e2 o [1, 2) R
(3,2) el 0 [0, 1) H Clock increment
(2,1) e2 0 [1, 3) R

Time specifications

Dimitri Lefebvre

MSR 19 — 21 November 2025, Reims, France
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Transformation of an ATl into a CIA
Logical event \
Definition : A clock interval automaton (CIA) is a
5-tuple Y,=(Y, Ey, 0, A, y,) Where
Y is a finite set of extended states y; ;

* irefers to location x;

e jreferstoclock domain[j,j+1)
E, is a finite set of events
o is a clock
Ay, < X x Ey x X is a transition relation
Yo is the initial state

E,=EU{D}

(D : tick event

Clock increment
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Transformation of an ATl into a CIA
TaxX;) : the maximal sojourn time in x;

el, [1,2), H @
Y(x)={0, 1, ..., T, (x)-1}

o0<4 each j € Y(xi)) means that the system may stay at
e2,[2,4), R @ xiwithin the time interval [j, j + 1) of width 1

v{i,j} is an extended state that refers both to the
state xi and time domain [j, j+ 1)

TminlXi,€, 1, X;) : the minimal time at which
transition (x:,e, |, x;) may fire

TmaxlX,€ , 1, X;) : the maximal time at which
transition (x: e, |, x;) may fire

Y(xi,e, I, xj) ={t.(x,e, |, xj), ceer Trnax(Xi 1€, 1, xj)-l}
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Comment 2 about time intervals

[2,4) =[2,3) VU [3,4)

[2,4] =[2,2] L (2,3)VI3,3]U(3,4) U4, 4]

........ _@,__....,

x1, [2, 2] x1, (2, 3) x1, [3, 3] x1, (3, 4) x1, [4, 4]
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e2,0in|[1, 3)
0:=0

el,oin [0, 2)

e2,0in[1, 2) 0<2
0:=0
el,oin [0, 1)
o<1l
Automata with Time Intervals Clock Interval Automata
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Intermediate conclusion

Advantages of CIA compared to other timed DES models
= Use trivial extensions of standard compositions and operations

* Product

* Parallel composition
* Determinisation

e Silent closure

Limitations of CIA

= Time precision / size
= Multiple settings

* Time semantics
Resetting options
Interval bounds

Dimitri Lefebvre MSR 19 — 21 November 2025, Reims, France



1. Introduction and motivations
NIVERSITE I 2. Modeling timed DES with automata

3. Observation mechanisms
= 4. Applications to CPS
NORMANDI . .
5. Conclusion and perspectives

Outline

3. Observation mechanisms based on labeled CIA
Static observation
Dynamic observation
Orwellian observation
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Time in state estimation problems

e, a
— ()
e'V’ Logical setting : one cannot know if the
system stays in x2
e, a
e, a

S

e [0,1),R, a

e, [0, 1), RV

e [1,2),R, a

e, [0,1),R, a

Time setting : one knows if the system
stays in x2
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Time in state estimation problems : state-trajectory opacity problem
One want to know if the system as visited x2

e, [0,1), R, a
e, [0, 1), R7>

e, [0, 1),R

Static observation mechanism:
P : e ->aduring [0, +x)

e [0, 1), Dynamic observation mechanism:
e [0,1),R, a .
P:e->aduring [0, 1) @
O e.
‘. 10, 1), R e, [0,1),R, a

e [0,1), R, a
Orwellian observation mechanism:

P :e->aduring [0, 3)

e.[0,1),Ra  SL2:Ra Information is re-constructed a posteriori

e, [0,1), R, a

Dimitri Lefebvre MSR 19 — 21 November 2025, Reims, France



1. Introduction and motivations

NIVERSITE 2. Modeling timed DES with automata

3. Observation mechanisms
4. Applications to CPS
5. Conclusion and perspectives

NORMANDI

3.1 Static observation mechanism

Definition : A labeled Automaton with
Time Intervals (LATI) is a triplet (A, Q, P)
where

* AisaCIA

 Qis aset of output labels
 Pisalabeling function

el, [1,2),H, a @
e2,[2,4),R, € @

Labeled ATI (LATI)

Definition : A labeled clock interval automaton
(LCIA) is a triplet (Y,, Qy, P,) where

* Y,isaCIA

* Q,is asetof output labels

* P,isalabeling function

Q,=Qu{®}

el:a
®: O ®:O®

—)—>E)—

Labeled CIA (LCIA)

Dimitri Lefebvre
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e2,a

e2,0in[1, 3), a
0:=0

e2,0in |1, 2), a
0:=0

el,oin][0, 1), &

Labeled Automata with Time Intervals (LATI) Labeled Clock Interval Automata (LCIA)
Transiton | event | Ple)
Static observation (1,2) el - Static observation
mechanism (1,3) e2 a mechanism
P:E->Q (3,2) o1 . P:EU{ O} >Qu{ D}
(2,1) e2 a

Dimitri Lefebvre MSR 19 — 21 November 2025, Reims, France
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LATI level
timed trajectory p: (x,, 0) - (e, 1.5) -> (x,, 1.5) - (e,, 3) -> (x4, 3) - (e, 3.5) -> (x, 0)

LATI ‘

el, [1,3),H &
timed sequence of events : w = (e, 1.5) (e,, 3) (e, 3.5)
e2, [2,4),H,E
‘ Observation projection P
timed sequence of observations ¢ = (a, 3.5)
e [1,4),R a

LCIA level

production p, :y; '®'> Y11~ €172 Y21 '®'> Y2,2 '®> Y23-€,->Y13- €2 V1o

oa G-
sequence wy=(De, (D) (Me,e

Observation projection P,

sequence of observations o, (1) (1) D a
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Comment 2 (follow up) about time intervals

[2,4) =[2,3) U3, 4) / Observable
0RO OR0
........ SN SN ) S

x1, [2, 3) x1, [3, 4) x1, [4, 5)

Non observable

[2,4] =[2,2] L (2,3)VI3,3]U(3,4) U4, 4]

........ @_,,

x1, [2, 2] x1, (2, 3) x1, [3, 3] x1, (3, 4) x1, [4, 4]
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Observer design by determinisation

Definition : The determinisation (observer) of the LCIAY,=(Y, E,, 0, A,, Yo, Qy, Py)
is defined as a deterministic CIA 0,=(Z, Q,, o, A,, z,) where:

Z — 2" : set of observer states

Qy is the set of labels of Y,

o is the clock

A, is the deterministic transition relation defined for all zand q by (z,q, Z’) € A,
withz’ =U{S(y,q):yez} ifz #J

z, = S(y, €) is the initial observer state

S(y, €) : set of extended states reachable Y by executing 0 or more
unobservable transitions

S(y, q) : set of extended states reachable from y by executing exactly 1
observable transition labeled by q followed by 0 or more unobservable
transitions

Dimitri Lefebvre

MSR 19 — 21 November 2025, Reims, France
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Observer design by determinisation

el, [1,3),H & :
e2, [2,4),H, &
: : e2:&
LATI to LCIA

e [1,4),R a
’ determinisation
a

The determinisation provides
e Set of locations

» Set of clock regions AL 0 s @ —
consistent with a given { Y10} a* LRIRTROPR P (haY,!
sequence of timed T l@
observations a yQ4

{351}

The complexity is double EXP

Li et al. 2022; Gao et al., 2025;

Dimitri Lefebvre MSR 19 — 21 November 2025, Reims, France
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3.2 Dynamic observation mechanism : energy saving, detectability or opacity enforcement

e3,0in[1, 2),R
P(e3, [1.2))

e?, P(e2,2,1)

Sensor activation policy
el,oin[l,2),R

P(el, [1, 2))

—>

o<?2 el,oin[0, 1),R
P(el, [0, 1))

Deterministic Stochastic
saves sensor
P(e2, 3, 0) energy failures

e2,0in[0, 1), R

P(e2, [0, 1)) ‘
Tanstion | event | pomain| yfe) R Transiton | vent | Domain | Poes) | Pen)

(1,2) el [1, 2) a (1,2) el [1, 2) a {a ¢}
(1,3) el [0, 1) a (1,3) el [0, 1) € {a e}
(3,2) e2 [0, 1) b (3,2) e2 [0, 1) b b
(2,1) e3 [1, 2) C (2,1) e3 [1, 2) C C
Static observation mechanism Dynamic observation mechanism
P:E->Q P:ExINXxIN->22

Shu et al., 2010; Wang et al. 2010; Yin et al 2019; Mao et al., 2024
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3.3 Orwellian observation mechanism : declassification

E=E,UE, UE, is a finite set of events:

* E,:subset of instantly observable events

* Eg4 :subset of events whose observation is delayed
* E, :subset of silent events

X=Xz U X,, is a finite set of discrete locations:
* Xg subsets of states that release the delayed observations
* X, subsets of states that hold on the delayed observations

/ e2, b e3, b ed4, a 5 &
Delayed | - © Release state
observation > X7 /

Hold on state el. £ eg &

e7, b e8, b e9, a el0,&

\ x2 x4 x6 x8 x10 ell, a
Ey, = {€2,e3,e7,e8} el2,a

Xg = {x1,x7,x10}
All time intervals are assumed to be [0, 1), all events are assumed to reset the clock

Mullins et al., 2014 ;Hou et al., 2022
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Release state
Delayed —— /
observation e2, b €3, b e4, a es, €
—»{ x« <7 e E, ={e2,e3,e7,e8)
ol 2 o6 C Xz = {x1,x7,x10}
e, b e8, b €9, a el0.£
Hold on state — ( x2 x4 x6 x8 x10 ell a
el2, a

timed trajectory p: (x,, 0) - (e,, 0.5) -> (x5, 0.5) - (e3, 1.2) -> (x, 1.2) - (e,, 1.3) -> (x5, 1.3)

LATI with release states ‘

timed sequence of events : w = (e,, 0.5) (e;, 1.2) (e,, 1.3)
‘ Orwellian observation projection P

timed sequence of observations ¢ = (a, 1.3) (b, 1.3) (b, 1.3)

Dimitri Lefebvre MSR 19 — 21 November 2025, Reims, France
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Intermediate conclusion

LCIA are ready to design various observation structures @

— Delays
—> Losses
—> Release
= ..

Current challenges include:

— Computational complexity : twin plants, ... ??
= Distributed setting :desynchronized multiple clocks, .... ??
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Outline

4. Application to cyber physical systems
Fault pattern diagnosis and diagnosability
Opacity verification
Attack detection
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4.1 Fault pattern diagnosis and diagnosability

=> Step1l : transformation into LCIA

LATI

e3,[1,2), a

() —(»)
el, [0,2), & e2,[1.3),&
0<2 0<3 0<2

e2,[2,3) el, [0, +o0)
—> 2, [0, +o0)

e3, [0, +00)

2
2

el, [0, +00)
e1,10,1) €2, [3,+00) .
el, [2,+00) e2 [0,1) el, e2, e3,
e3 [0.+00)  (Fault)
e2, [0, +o0) "
e3, [0, +o0) patiern el e2, e3, D

Lefebvre et al. 2023
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=> Step2 : Recognizer design LCIA
recognizer

Parallel

x composition

el, e2, e3 e2, e3, @ el, e2, e3, @

el, e2, e3, @

b et.e2.3, O F recognizes the first

occurrence of the pattern
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=> Step 3 : Observer design

ypl0

{yp9, yp10,
ypll}

Observer
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4.2 Opacity verification and enforcement mmnm

NORMANDI

(1,2) el [1, 2)

e3,o0in[1, 2),R
(1,3) el [0, 1) a ¢
(3,2) e2 [0, 1) b b
(2,1) e3 [1, 2) € €

Secret = {x3}

yQ3
P4 static labeling v}
@
yQ5
@
{ YZ,O} —a { ylel yl,O }

Zhang et al. 2021; Zhang et al. 2025; Hou et al. 2022
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0L 2) R MMEE

(1,2) [1,2)
el,oin[1,2),R (1,3) el [0, 1) a
(3,2) e2 [0, 1) b b
0<2 \&hoinl01) 0<?2 (2,1) e3  [1,2) & €
Secret = {x3}
e2,0in[0, 1), R
yQl yQ3
P5 dynamic —» (Vi Vsl Iy}
deterministic labeling
yQ2 Jr yQ4 T®
{ Yzo} 1Y Y Y30l

\i_/
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4.3 Detection of cyber attacks

sequence of LATI

e3,0in][1, 2),R

observations

Scenario 1 o=(a, 1.2) (a, 3.5) _
o' =(a12)(a23) OLIOJOL

o<2 Scenario2 o=(a, 1.2) (a, 4.3)
c=(a, 12)(a 3.1) O~ Da® O Da

yQ3
alarm
{y,}
@®
yQ5
O)
{ Yool —» { Yo Y10 }

Gaouar, et al. 2025
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4.3 Detection of cyber attacks : can we do better ?

e3,o0in[l, 2),R
sequence of LATI

observations

el,oin[1, 2), R\

Scenario 3 c=(a 1.2)..

{ Y10} —» { Y. Y11}
v v
@ { Y2,0} { y2,0' y3|0 } & { }
¢ b

{ ¥30} —» { .. }

P4 labeling function

Gaouar, et al. 2025
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Outline

5. Conclusion and perspectives
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Time s
running...

What’s next ?

A

Clock unit defines
the detection
precision

Clock Interval
Automata for
Timed DESs

and
the size
of the models

Protect information systems
against faults, attacks, cyber war, ...
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